...
首页> 外文期刊>Applied Mathematical Modelling >Extension of SPH to simulate non-isothermal free surface flows during the injection molding process
【24h】

Extension of SPH to simulate non-isothermal free surface flows during the injection molding process

机译:SPH延伸以在注塑过程中模拟非等温自由表面流动

获取原文
获取原文并翻译 | 示例
           

摘要

This article presents an extension of smoothed particle hydrodynamics (SPH) to non-isothermal free surface flows during the injection molding process. Specifically, we use the method presented by Xu and Yu, Appl. Math. Model. 48 (2017) pp. 384-409, in which the corrected kernel gradient is implemented to increase the computational accuracy and the Rusanov flux is introduced into the continuity equation to alleviate large and random pressure oscillations. To model non-isothermal free surface flows, a working SPH discretization of the temperature equation is derived. An enhanced treatment of the wall boundary is further developed, which can model arbitrary-shaped mold walls. The proposed SPH method is first validated by solving non-isothermal Couette flow and non-isothermal injection molding of a circular disc with a core and comparing the SPH results with those obtained by other numerical methods or experiments. We then extend the numerical method to non-isothermal injection molding of F-shaped and N-shaped cavities. The convergence of the method is examined with several different particle sizes. The effects of the operating conditions (e.g., injection temperature, temperature of the mold wall, and injection velocity) on the flow behavior are analyzed. All the results illustrate that the present SPH method is a powerful computational tool for simulations of non-isothermal free surface flows during the injection molding process. (C) 2019 Elsevier Inc. All rights reserved.
机译:本文介绍了在注射成型过程中向非等温自由表面流动的平滑粒子流体动力学(SPH)的延伸。具体而言,我们使用xu和yu,appl提供的方法。数学。模型。 48(2017)PP。384-409,其中实现了校正的内核梯度以提高计算精度,并将Rusanov通量引入连续性方程以减轻大而随机的压力振荡。为了模拟非等温自由表面流动,推导出温度方程的工作SPH离散化。进一步开发了对壁边界的增强处理,其可以模拟任意形状的模壁。通过用核心求解圆盘的非等温沟槽流和非等温注射成型并将SPH与通过其他数值方法或实验获得的那些进行比较来验证所提出的SPH方法。然后,我们将数值方法扩展到F形和N形空腔的非等温注射成型。用几种不同的颗粒尺寸检查该方法的收敛。分析了操作条件(例如,注射温度,模具壁的喷射温度,温度和注射速度)对流动行为的影响。所有结果表明,目前的SPH方法是在注塑过程中模拟非等温自由表面流动的强大计算工具。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号