...
首页> 外文期刊>Applied Mathematical Modelling >Bounds to the pull-in voltage of a MEMS/NEMS beam with surface elasticity
【24h】

Bounds to the pull-in voltage of a MEMS/NEMS beam with surface elasticity

机译:用表面弹性的MEMS / NEMS光束的拉出电压绑定

获取原文
获取原文并翻译 | 示例
           

摘要

The problem of pull-in instability of a cantilever micro- or nano-switch under electrostatic forces has attracted considerable attention in the literature, given its importance in designing micro- and nano-electromechanical systems (MEMS and NEMS). The non-linear nature of the problem supports the typical approach that relies on numerical or semi-analytical tools to approximate the solution. By contrast, we determine fully analytical upper and lower bounds to the pull-in instability phenomenon for a cantilever beam under the action of electrostatic, van der Waals or Casimir forces. In particular, the novel contribution of this works consists in accounting for size effects analytically, in the spirit of surface elasticity, which adds considerable complication to the problem, allowing for a nonconvex beam deflection. Surface energy effects are generally ignored in classical elasticity, although they are known to become relevant for very small structures and especially at the nano-scale, owing to their large surface/volume ratio. Closed form lower and upper bounds are given for the pull-in characteristics, that allow to discuss the role of several tuneable parameters. Indeed, the evolution of the cantilever tip deflection is presented as a function of the applied voltage up to the occurrence of pull-in and the contribution of van der Waals and Casimir intermolecular interactions is discussed. It is found that intermolecular forces strongly decrease the pull-in voltage, while surface elasticity works in the opposite direction and stabilizes the system. The accuracy of the bounding solutions, measured in terms of the difference between upper and lower analytical bounds, is generally very good, although it rapidly deteriorates as the effect of surface elasticity becomes more pronounced. Finally, approximated closed-form relations are developed to yield simple and accurate design formulae: in particular, they provide estimates for the minimum theoretical gap and for the maximum operable length for a freestanding cantilever in the presence of the effects of surface elasticity and intermolecular interactions. Results may be especially useful for designing and optimizing NEMS switches.
机译:鉴于设计微型和纳米机电系统(MEMS和NEM),在静电力下,在静电力下,悬臂微或纳米开关在静电力下的悬臂微或纳米开关的毫无稳定性引起了相当大的关注。问题的非线性性质支持依赖于数值或半分析工具以近似解的典型方法。相比之下,在静电,范德瓦尔斯或卡西米尔力的作用下,我们将完全分析的上限和下限用于悬臂梁的拉伸稳定性现象。特别是,这种作品的新颖贡献在于,在表面弹性的精神中分析对尺寸效应进行了分析,这增加了对问题的相当大的复杂性,允许非渗透梁偏转。在经典弹性中通常忽略表面能量效应,尽管已知它们与非常小的结构相关,但尤其是纳米尺度,所以由于其大的表面/体积比而言。封闭形式的下界和上界给出了拉入特性,允许讨论几个可调参数的作用。实际上,悬臂尖端偏转的演变作为施加电压的函数呈现出施加的电压,其发生的发生,并且讨论了范德华和卡西米尔分子间相互作用的贡献。发现分子间力强烈地降低了拉出电压,而表面弹性在相反的方向上工作并稳定系统。在上下分析界限之间的差异方面测量的边界解决方案的准确性通常非常好,尽管随着表面弹性的效果变得更加明显,但它迅速劣化。最后,开发了近似的闭合性关系,以产生简单准确的设计公式:特别是在存在表面弹性和分子间相互作用的情况下,它们为独立悬臂提供最小理论差距和最大可操作长度的估计。结果对于设计和优化NEMS交换机可能特别有用。

著录项

  • 来源
    《Applied Mathematical Modelling》 |2021年第3期|1211-1226|共16页
  • 作者单位

    Dipartimento di Scienze e Metodi dell'Ingegneria Universita di Modena e Reggio Emilia Via Amendola 2 42122 Reggio Emilia Italy Interdipartimental centre "En&Tech" via G. Amendola 2 42122 Reggio Emilia Italy;

    Dipartimento di Scienze e Metodi dell'Ingegneria Universita di Modena e Reggio Emilia Via Amendola 2 42122 Reggio Emilia Italy Interdipartimental centre "En&Tech" via G. Amendola 2 42122 Reggio Emilia Italy;

    Interdipartimental centre "En&Tech" via G. Amendola 2 42122 Reggio Emilia Italy Dipartimento di Ingegneria "Enzo Ferrari" Universita di Modena e Reggio Emilia Via Vivarelli 10 41125 Modena Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Pull-in instability; Electro-mechanical nano-switch; Surface elasticity; NEMS;

    机译:拉紧稳定性;电力纳米开关;表面弹性;NEMS.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号