首页> 外文期刊>Applied Mathematical Modelling >Efficient high-dimensional material reliability analysis with explicit voxel-level stochastic microstructure representation
【24h】

Efficient high-dimensional material reliability analysis with explicit voxel-level stochastic microstructure representation

机译:高效高维材料可靠性分析,具有明确的体素级随机微结构表示

获取原文
获取原文并翻译 | 示例
           

摘要

A novel efficient methodology for probabilistic material reliability analysis considering fine-scale microstructure stochasticity is proposed in this paper. Integrated computational material engineering requires efficient multiscale computational capabilities to enable computational design and validation. Two critical challenges are identified: handling uncertainties from microstructures and material properties; and handling the "curse of dimensionality" for probabilistic solvers. The proposed study addresses these two critical challenges. First, an analytical and hierarchical uncertainty quantification method is proposed for the explicit stochastic microstructure representation at the voxel-level. The hierarchy of uncertainties from both phase maps and uncertainties within each phase is modeled using an explicit Gaussian mixture random field. Analytical approximation for the arbitrary non-Gaussian random field is derived, which can facilitate the computation of gradient information in optimization. Following this, an efficient probabilistic solver using adjoint first-order reliability method combining the importance sampling is derived by formulating the material reliability analysis as a constrained optimization problem. The adjoint method is used to efficiently evaluate the responses and exact gradients with the help of the analytical Gaussian mixture random field. Several numerical examples for material reliability calculation with high-dimensional (voxel-level) random fields are subsequently employed to demonstrate and validate the proposed methodology. The results of the proposed method are quantitatively compared to those obtained via the classical first-order reliability method, direct Monte Carlo simulation, subset simulation, and the sequential importance sampling method. The comparisons indicate that the proposed method possesses high efficiency for high-dimensional material reliability problems.
机译:本文提出了考虑微观微观结构随机性的概率材料可靠性分析的新型高效方法。集成计算材料工程需要有效的多尺度计算能力来实现计算设计和验证。确定了两个关键挑战:处理微观结构和材料特性的不确定性;处理概率求解器的“维度诅咒”。拟议的研究解决了这两个关键挑战。首先,提出了分析和分层不确定性定量方法,用于体素水平的显式随机微结构表示。使用显式高斯混合随机字段建模来自每个阶段的相位映射和不确定性的不确定性的层次。推导出任意非高斯随机场的分析近似,这可以促进优化中的梯度信息的计算。在此之后,通过将材料可靠性分析作为约束优化问题的材料可靠性分析来导出使用伴随的一阶可靠性方法的有效概率求解器。伴随方法用于有效地评估借助于分析高斯混合物随机场的响应和精确梯度。随后采用具有高维(体素级)随机字段的材料可靠性计算的几个数值例子来证明和验证所提出的方法。所提出的方法的结果与通过经典一阶可靠性方法,直接蒙特卡罗模拟,子集模拟和顺序重视采样方法获得的那些。比较表明,该方法具有高效率的高维材料可靠性问题。

著录项

  • 来源
    《Applied Mathematical Modelling》 |2021年第3期|1117-1140|共24页
  • 作者

    Yi Gao; Yang Jiao; Yongming Liu;

  • 作者单位

    School for Engineering of Matter Transport and Energy Arizona State University Tempe AZ 85287 United States;

    School for Engineering of Matter Transport and Energy Arizona State University Tempe AZ 85287 United States;

    School for Engineering of Matter Transport and Energy Arizona State University Tempe AZ 85287 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Non-Gaussian random field; Karhunen-Loeve expansion; Microstructure; Reliability analysis;

    机译:非高斯随机场;Karhunen-Loeve扩张;微观结构;可靠性分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号