首页> 外文期刊>Applied Physics Letters >Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy
【24h】

Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy

机译:时间分辨太赫兹光谱显示钨掺杂二氧化钒纳米颗粒薄膜的超快太赫兹调制特性

获取原文
获取原文并翻译 | 示例
           

摘要

The ultrafast terahertz (THz) modulation characteristic during photo-induced insulator-to-metal transition (IMT) of undoped and tungsten (W)-doped VO_2 film was investigated at picoseconds time scale using time-resolved THz spectroscopy. W-doping slows down the photo-induced IMT dynamic processes (both the fast non-thermal process and the slow metallic phase propagation process) in VO_2 film and also reduces the pump fluence threshold of photo-induced IMT in VO_2 film. Along with the observed broadening of phase transition temperature window of IMT in W-doped VO_2, we conclude that W-doping prevents metallic phase domains from percolation. By further extracting carrier properties from photo-induced THz conductivity at several phase transition times, we found that the electron-electron correlation during IMT is enhanced in W-doped VO_2.
机译:使用时间分辨的THz光谱,在皮秒级的时间范围内研究了未掺杂和掺杂钨(W)的VO_2薄膜在光诱导的绝缘体到金属的跃迁(IMT)过程中的超快太赫兹(THz)调制特性。掺W减慢了VO_2薄膜中光诱导的IMT动态过程(快速的非热过程和缓慢的金属相传播过程),并降低了VO_2薄膜中光诱导的IMT的泵浦注量阈值。随着观察到的W掺杂的VO_2中IMT的相变温度窗口变宽,我们得出结论,W掺杂阻止了金属相域的渗透。通过在几个相变时间进一步从光诱导的太赫兹电导率中提取载流子特性,我们发现,在掺W的VO_2中,IMT期间的电子电子相关性得到了增强。

著录项

  • 来源
    《Applied Physics Letters》 |2015年第3期|031906.1-031906.5|共5页
  • 作者单位

    College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China,National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics & Terahertz Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China;

    National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics & Terahertz Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China;

    College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China;

    National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics & Terahertz Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China;

    National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics & Terahertz Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China;

    College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China;

    College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China;

    College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China;

    National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics & Terahertz Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China;

    National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics & Terahertz Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号