...
首页> 外文期刊>Applied Physics Letters >High conductive gate leakage current channels induced by In segregation around screw- and mixed-type threading dislocations in lattice-matched In_xAl_(1-x)N/GaN heterostructures
【24h】

High conductive gate leakage current channels induced by In segregation around screw- and mixed-type threading dislocations in lattice-matched In_xAl_(1-x)N/GaN heterostructures

机译:在晶格匹配的In_xAl_(1-x)N / GaN异质结构中,螺型和混合型螺纹位错周围的In偏析引起的高导电栅极泄漏电流通道

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A correlation between microstructures and high gate leakage current density of Schottky contacts on lattice-matched In_xAl_(1-x)N/GaN heterostructures has been investigated by means of current-voltage measurements, conductive atom force microscopy (C-AFM), and transmission electron microscopy (TEM) investigations. It is shown that the reverse-bias gate leakage current density of Ni/Au Schottky contacts on In_xAl_(1-x)N/GaN heterostructures is more than two orders of magnitude larger than that on In_xAl_(1-x)N/GaN ones. C-AFM and TEM observations indicate that screw- and mixed-type threading dislocations (S/M-TDs) are efficient leakage current channels in In_xAl_(1-x)N barrier and In segregation is formed around S/M-TDs. It is believed that In segregation around S/M-TDs reduces local Schottky barrier height to form conductive channels and leads to high leakage current density of Schottky contacts on In_xAl_(1-x)N/GaN heterostructures.
机译:通过电流电压测量,导电原子力显微镜(C-AFM)和透射率研究了晶格匹配In_xAl_(1-x)N / GaN异质结构上肖特基接触的微观结构与高栅极漏电流密度之间的相关性。电子显微镜(TEM)研究。结果表明,In_xAl_(1-x)N / GaN异质结构上Ni / Au肖特基接触的反向偏置栅极泄漏电流密度比In_xAl_(1-x)N / GaN异质结上的反向偏置栅极泄漏电流密度大两个数量级以上。 。 C-AFM和TEM观察表明,螺钉型和混合型螺纹位错(S / M-TDs)是In_xAl_(1-x)N势垒中的有效泄漏电流通道,并且在S / M-TDs周围形成了In偏析。据信,在S / M-TD周围的In隔离降低了局部肖特基势垒高度以形成导电沟道,并导致In_xAl_(1-x)N / GaN异质结构上的肖特基接触的高泄漏电流密度。

著录项

  • 来源
    《Applied Physics Letters》 |2010年第23期|p.232106.1-232106.3|共3页
  • 作者单位

    State Key Laboratory of Artificial Micrvstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China;

    State Key Laboratory of Artificial Micrvstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China;

    State Key Laboratory of Artificial Micrvstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China;

    State Key Laboratory of Artificial Micrvstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China;

    State Key Laboratory of Artificial Micrvstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China;

    State Key Laboratory of Artificial Micrvstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China;

    State Key Laboratory of Artificial Micrvstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China;

    State Key Laboratory of Artificial Micrvstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China;

    State Key Laboratory of Artificial Micrvstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China;

    Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, People's Republic of China;

    Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号