...
首页> 外文期刊>Applied Physics Letters >In situ wavelength tuning of quantum-dot single- photon sources integrated on a CMOS-processed silicon waveguide
【24h】

In situ wavelength tuning of quantum-dot single- photon sources integrated on a CMOS-processed silicon waveguide

机译:集成在CMOS处理的硅波导上的量子点单光子源的原位波长调谐

获取原文
获取原文并翻译 | 示例
           

摘要

Silicon quantum photonics provides a promising pathway to realize large-scale quantum photonic integrated circuits (QPICs) by exploiting the power of complementary-metal-oxide-semiconductor (CMOS) technology. Toward scalable operation of such silicon-based QPICs, a straightforward approach is to integrate deterministic single-photon sources (SPSs). To this end, hybrid integration of deterministic solid-state SPSs, such as those based on InAs/GaAs quantum dots (QDs), is highly promising. However, the spectral and spatial randomness inherent in the QDs poses a serious challenge for scalable implementation of multiple identical SPSs on a silicon CMOS chip. To overcome this challenge, we have been investigating a hybrid integration technique called transfer printing, which is based on a pick-and-place operation and allows for the integration of the desired QD SPSs on any locations on the silicon CMOS chips at will. Nevertheless, even in this scenario, in situ fine tuning for perfect wavelength matching among the integrated QD SPSs will be required for interfering photons from dissimilar sources. Here, we demonstrate in situ wavelength tuning of QD SPSs integrated on a CMOS silicon chip. To thermally tune the emission wavelengths of the integrated QDs, we augmented the QD SPSs with optically driven heating pads. The integration of all the necessary elements was performed using transfer printing, which largely simplified the fabrication of the three-dimensional stack of microanophotonic structures. We further demonstrate in situ wavelength matching between two dissimilar QD sources integrated on the same silicon chip. Our transfer-printing-based approach will open the possibility for realizing large-scale QPICs that leverage CMOS technology.
机译:硅量子光子学通过利用互补金属氧化物半导体(CMOS)技术的强大功能,为实现大规模量子光子集成电路(QPIC)提供了有希望的途径。为了实现这种基于硅的QPIC的可扩展操作,一种直接的方法是集成确定性单光子源(SPS)。为此,确定性固态SPS(例如基于InAs / GaAs量子点(QD)的固态固态SPS)的混合集成非常有前途。然而,量子点固有的频谱和空间随机性对在硅CMOS芯片上可扩展实施多个相同SPS构成了严峻的挑战。为了克服这一挑战,我们一直在研究一种称为转移打印的混合集成技术,该技术基于拾取和放置操作,可将所需的QD SPS随意集成在硅CMOS芯片上的任何位置。尽管如此,即使在这种情况下,也需要对集成QD SPS之间进行完美波长匹配的原位微调,以干扰来自不同来源的光子。在这里,我们演示了集成在CMOS硅芯片上的QD SPS的原位波长调谐。为了热调谐集成量子点的发射波长,我们增加了带有光驱动加热垫的量子点SPS。所有必要元素的集成使用转移印刷进行,这大大简化了微/纳米光子结构三维堆叠的制造。我们进一步演示了集成在同一硅芯片上的两个不同QD源之间的原位波长匹配。我们基于转移打印的方法将为实现利用CMOS技术的大规模QPIC开启可能性。

著录项

  • 来源
    《Applied Physics Letters》 |2020年第4期|041103.1-041103.5|共5页
  • 作者单位

    Univ Tokyo Inst Ind Sci Meguro Ku 4-6-1 Komaba Tokyo 1538505 Japan|Univ Tokyo Inst Solid State Phys 5-1-5 Kashiwanoha Kashiwa Chiba 2778581 Japan;

    Univ Tokyo Inst Nano Quantum Informat Elect Meguro Ku 4-6-1 Komaba Tokyo 1538505 Japan;

    Univ Tokyo Inst Ind Sci Meguro Ku 4-6-1 Komaba Tokyo 1538505 Japan;

    Univ Tokyo Inst Ind Sci Meguro Ku 4-6-1 Komaba Tokyo 1538505 Japan|Univ Tokyo Inst Nano Quantum Informat Elect Meguro Ku 4-6-1 Komaba Tokyo 1538505 Japan;

    Univ Tokyo Inst Solid State Phys 5-1-5 Kashiwanoha Kashiwa Chiba 2778581 Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号