...
首页> 外文期刊>Applied Physics >Structure and optical absorption properties of NiTiO_3 nanocrystallites
【24h】

Structure and optical absorption properties of NiTiO_3 nanocrystallites

机译:NiTiO_3纳米微晶的结构和吸光性能

获取原文
获取原文并翻译 | 示例
           

摘要

Nickel titanate (NiTiO_3) nanocrystallites are synthesized via a solid-state reaction from a precursor prepared by a homogeneous precipitation method. Ilme-nite-structural NiTiO_3 consists of alternating layers of NiO_6 and TiO_6 octahedra. It not only strongly absorbs ultraviolet light (wavelength <360 nm) but also selectively absorbs visible light mainly in a wavelength range of 420-540 nm and above 700 nm. The synthetic NiTiO_3 is a direct-gap semiconducting material with a band gap of 3.00 eV and has obvious absorbance peaks at 448, 502, and 743 nm, corresponding to the photon energies of 2.77, 2.47, and 1.67 eV, respectively. Nevertheless, NiTiO_3 does not exhibit obvious photocatalytic activity in the degradation of methylene blue in water. It is proposed that the visible light absorbance peaks of NiTiO_3 mainly originate from the Ni: d → d charge-transfer transitions within its valence band. NiTiO_3 has wide energy gaps from the hybridized Ni 3d and O 2p orbitals to the Ti 3d orbitals, which block both Ni~(2+) → Ti~(4+) and O~(2-) → Ti~(4+) charge-transfer transitions between valence band and conduction band, and thus baffle its photocatalytic performance.
机译:钛酸镍(NiTiO_3)纳米晶体是通过固态反应从均相沉淀法制备的前驱体合成的。伊姆尼特结构的NiTiO_3由NiO_6和TiO_6八面体的交替层组成。它不仅强烈吸收紫外线(波长<360 nm),而且主要在420-540 nm和700 nm以上的波长范围内选择性吸收可见光。合成的NiTiO_3是带隙为3.00 eV的直接隙半导体材料,在448、502和743 nm处具有明显的吸收峰,分别对应于2.77、2.47和1.67 eV的光子能量。然而,NiTiO_3在水中亚甲基蓝的降解中没有表现出明显的光催化活性。提出NiTiO_3的可见光吸收峰主要来自其价带内的Ni:d→d电荷转移跃迁。 NiTiO_3从混合的Ni 3d和O 2p轨道到Ti 3d轨道具有很宽的能隙,从而阻挡了Ni〜(2+)→Ti〜(4+)和O〜(2-)→Ti〜(4+)价带和导带之间的电荷转移跃迁,从而阻碍了其光催化性能。

著录项

  • 来源
    《Applied Physics》 |2016年第8期|725.1-725.7|共7页
  • 作者单位

    Department of Chemistry, Tianjin University, Tianjin 300072, China,Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;

    Department of Chemistry, Tianjin University, Tianjin 300072, China,Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;

    Department of Chemistry, Tianjin University, Tianjin 300072, China;

    Department of Chemistry, Tianjin University, Tianjin 300072, China,Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;

    Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号