首页> 外文期刊>Applied Surface Science >Electric-field controlled capture or release of phosgene molecule on graphene-based materials: First principles calculations
【24h】

Electric-field controlled capture or release of phosgene molecule on graphene-based materials: First principles calculations

机译:电场控制的在石墨烯基材料上捕获或释放光气分子:第一性原理计算

获取原文
获取原文并翻译 | 示例
       

摘要

Phosgene, one of the common chemicals in many industry areas, is extremely harmful to human and the environment. Thus, it is necessary to design the advanced materials to detect or remove phosgene effectively. In fact, detection or adsorption of some small gas molecules are not the most difficult to actualize. Whereas, one of the primary challenges is the gas molecules desorption from the adsorbent for the purpose of recycling of substrate materials since the small gas molecules interacts strongly with the substrates. In this work, the interaction between the phosgene molecule and pristine or Mn-doped graphene sheets with different electric field and charge state are investigated by using first-principles simulations. Our results show that the adsorption energy of phosgene on Mn-doped graphene is dramatically weakened by applying an external negative electric field but is obviously enhanced by introducing a positive electric field. These processes can be easily controlled by transform the direction of the electric field. Thus, introducing an external electric field or charge in the system may be an excellent method to control the phosgene molecule adsorption and desorption on Mn-doped graphene sheet. All energy needed is just a small quantity of electricity, which satisfies well the requirement of green chemistry and sustainable development. The mechanism and reason of reversible adsorption/desorption is also revealed in terms of energy, charge distribution and orbital analysis. Such spontaneous adsorption or desorption makes Mn-doped graphene to be used as an excellent reusable scavenger of phosgene. (C) 2017 Elsevier B.V. All rights reserved.
机译:光气是许多工业领域中的常见化学物质之一,对人类和环境极为有害。因此,有必要设计先进的材料来有效地检测或去除光气。实际上,检测或吸附一些小气体分子并不是最难实现的。鉴于主要的挑战之一是气体分子从吸附剂中解吸出来,以循环利用基质材料,因为小的气体分子会与基质强烈相互作用。在这项工作中,通过使用第一性原理模拟研究了光气分子与具有不同电场和电荷状态的原始或Mn掺杂的石墨烯片之间的相互作用。我们的结果表明,通过施加外部负电场,光气在Mn掺杂的石墨烯上的吸附能显着减弱,但通过引入正电场,则明显增强。通过变换电场方向可以很容易地控制这些过程。因此,在系统中引入外部电场或电荷可能是控制光气分子在Mn掺杂石墨烯片材上吸附和脱附的极好方法。所需的所有能量仅是少量的电能,完全满足绿色化学和可持续发展的要求。还从能量,电荷分布和轨道分析方面揭示了可逆吸附/解吸的机理和原因。这种自发的吸附或解吸使掺锰的石墨烯可用作光气的极好的可重复使用的清除剂。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Applied Surface Science》 |2018年第ptab期|1019-1026|共8页
  • 作者单位

    Northeast Normal Univ, Natl & Local United Engn Lab Power Battery, Fac Chem, Inst Funct Mat Chem, Renmin Rd 5268, Changchun 130024, Jilin, Peoples R China;

    Northeast Normal Univ, Natl & Local United Engn Lab Power Battery, Fac Chem, Inst Funct Mat Chem, Renmin Rd 5268, Changchun 130024, Jilin, Peoples R China;

    Northeast Normal Univ, Natl & Local United Engn Lab Power Battery, Fac Chem, Inst Funct Mat Chem, Renmin Rd 5268, Changchun 130024, Jilin, Peoples R China;

    Northeast Normal Univ, Natl & Local United Engn Lab Power Battery, Fac Chem, Inst Funct Mat Chem, Renmin Rd 5268, Changchun 130024, Jilin, Peoples R China;

    Northeast Normal Univ, Natl & Local United Engn Lab Power Battery, Fac Chem, Inst Funct Mat Chem, Renmin Rd 5268, Changchun 130024, Jilin, Peoples R China;

    Northeast Normal Univ, Natl & Local United Engn Lab Power Battery, Fac Chem, Inst Funct Mat Chem, Renmin Rd 5268, Changchun 130024, Jilin, Peoples R China;

    Jilin Univ, Sch Publ Hlth, Xinmin St 1163, Changchun 130021, Jilin, Peoples R China;

    Northeast Normal Univ, Natl & Local United Engn Lab Power Battery, Fac Chem, Inst Funct Mat Chem, Renmin Rd 5268, Changchun 130024, Jilin, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Phosgene; Mn-doped graphene; Electric field; Adsorption or desorption; Substrate recycling; Molecular dynamics simulation;

    机译:光气锰掺杂石墨烯电场吸附或解吸底物回收分子动力学模拟;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号