首页> 外文期刊>Applied Surface Science >Fe3O4@polyaniline yolk-shell microanospheres as bifunctional materials for lithium storage and electromagnetic wave absorption
【24h】

Fe3O4@polyaniline yolk-shell microanospheres as bifunctional materials for lithium storage and electromagnetic wave absorption

机译:Fe3O4 @聚苯胺卵黄壳微/纳米球作为双功能材料用于锂存储和电磁波吸收

获取原文
获取原文并翻译 | 示例
       

摘要

Unique Fe3O4/polyaniline (PANI) composite with yolk-shell microanostructure (FPys) has been successfully synthesized by a facile silica-assisted in-situ polymerization and subsequent etching strategy. The structural and compositional studies of the FPys composites are performed by employing X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The yolk-shell morphology of the products is confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. When evaluated as anode material for lithium-ion batteries, the as-prepared FPys electrodes deliver superior capacity, better cycling stability and rate capability than those of bare Fe3O4 microanospheres and Fe3O4/PANI core-shell (FPcs) electrodes. Moreover, FPys also exhibits excellent electromagnetic wave absorption performance when comparing to the synthesized Fe3O4-based electromagnetic wave absorbers, in which strong reflection loss and extensive response bandwidth can be achieved simultaneously. The excellent bifunctional properties of FPys material are associated with the specially designed hierarchical microanostructures. The current strategy that application directed structural design can be applied to the synthesis of other multifunctional materials. (C) 2017 Elsevier B.V. All rights reserved.
机译:独特的Fe3O4 /聚苯胺(PANI)复合物具有卵黄壳微/纳米结构(FPys),已通过简便的二氧化硅辅助原位聚合和随后的蚀刻策略成功合成。 FPys复合材料的结构和组成研究是通过使用X射线衍射(XRD)和X射线光电子能谱(XPS)进行的。通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察证实了产品的卵黄壳形态。当被评估为锂离子电池的负极材料时,所制备的FPys电极具有比裸Fe3O4微/纳米球和Fe3O4 / PANI核壳(FPcs)电极更高的容量,更好的循环稳定性和倍率性能。此外,与合成的Fe3O4基电磁波吸收剂相比,FPys还表现出出色的电磁波吸收性能,其中可以同时实现强大的反射损耗和广泛的响应带宽。 FPys材料的出色双功能特性与专门设计的分层微观/纳米结构有关。应用导向结构设计的当前策略可以应用于其他多功能材料的合成。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号