首页> 外文期刊>Applied Surface Science >Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres
【24h】

Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres

机译:Ag负载量对花状ZnO微球结构和光催化性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Flower-like Ag/ZnO samples were successfully fabricated via a simple and cost efficient method without surfactants. The morphologies, structural and optical properties of Ag/ZnO samples with various Ag content were investigated. The samples were systematically characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N-2 adsorption desorption isotherm, diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and photoluminescence spectroscopy (PL). It was found that ZnO was wurtzite phase and metallic Ag particles were wrapped by ZnO nanosheets. Compared with pure metallic Ag, the binding energy of Ag 3d for the Ag/ZnO samples distinctly shifted to the lower binding energy, which was attributed to the interaction between ZnO and Ag. With the increase of Ag content, surface plasmon absorption band of Ag/ZnO samples was obviously widened; meanwhile, PL intensity was decreased. The photocatalytic performance of Ag/ZnO samples were carried out by the degradation of methylene blue (MB) solution under visible light irradiation. The deposition of a certain amount of Ag was beneficial to the improvement of photocatalytic activity. The degradation rate of the Ag/ZnO sample with Ag/Zn ratio 1/20 was greater than fourfold times faster than that of ZnO. It was suggested that photoexcited electrons transferred from Ag to ZnO due to surface plasmon resonance (SPR), which could effectively reduce the recombination of electron-hole pairs and prolong lifetime of the electron-holes pairs, promoting the degradation efficiency. The deposition of a large amount of Ag was unfavorable for the formation of flower-like Ag/ZnO samples, and caused the decrease of specific surface area and the aggregation of Ag nanoparticles, leading to the reduction of photocatalytic performance. (C) 2016 Elsevier B.V. All rights reserved.
机译:通过简单且经济高效的方法无需表面活性剂即可成功制备出花朵状的Ag / ZnO样品。研究了不同Ag含量的Ag / ZnO样品的形貌,结构和光学性质。通过X射线粉末衍射(XRD),透射电子显微镜(TEM),扫描电子显微镜(SEM),N-2吸附解吸等温线,漫反射光谱(DRS),X射线光电子光谱(XPS)对样品进行了系统表征)和光致发光光谱(PL)。发现ZnO是纤锌矿相并且金属Ag颗粒被ZnO纳米片包裹。与纯金属Ag相比,Ag 3d对Ag / ZnO样品的结合能明显转移到较低的结合能上,这归因于ZnO和Ag之间的相互作用。随着Ag含量的增加,Ag / ZnO样品的表面等离子体吸收带明显变宽。同时,PL强度降低。 Ag / ZnO样品的光催化性能是通过在可见光照射下降解亚甲基蓝(MB)溶液来实现的。一定量的Ag的沉积有利于提高光催化活性。 Ag / Zn比为1/20的Ag / ZnO样品的降解速率比ZnO的降解速率快四倍。研究表明,由于表面等离振子共振(SPR),光激发电子从Ag转移到ZnO,可以有效减少电子-空穴对的重组,延长电子-空穴对的寿命,提高降解效率。大量Ag的沉积不利于形成花状Ag / ZnO样品,并导致比表面积的减小和Ag纳米颗粒的聚集,从而导致光催化性能的降低。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Applied Surface Science》 |2017年第ptab期|476-483|共8页
  • 作者单位

    Univ Shanghai Sci & Technol, Sch Environm & Architecture, Environm & Low Carbon Res Ctr, Shanghai 200093, Peoples R China;

    Taizhou Vocat & Tech Coll, Inst Appl Biotechnol, Taizhou 318000, Zhejiang, Peoples R China;

    Univ Shanghai Sci & Technol, Sch Environm & Architecture, Environm & Low Carbon Res Ctr, Shanghai 200093, Peoples R China;

    Univ Shanghai Sci & Technol, Sch Environm & Architecture, Environm & Low Carbon Res Ctr, Shanghai 200093, Peoples R China;

    Univ Shanghai Sci & Technol, Sch Environm & Architecture, Environm & Low Carbon Res Ctr, Shanghai 200093, Peoples R China;

    Taizhou Vocat & Tech Coll, Inst Appl Biotechnol, Taizhou 318000, Zhejiang, Peoples R China;

    Univ Shanghai Sci & Technol, Sch Environm & Architecture, Environm & Low Carbon Res Ctr, Shanghai 200093, Peoples R China;

    Univ Shanghai Sci & Technol, Sch Environm & Architecture, Environm & Low Carbon Res Ctr, Shanghai 200093, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ag/ZnO; Flower-like morphology; Hydrothermal method; Surface plasmon resonance; Photocatalysis; Free oxygen radicals; Visible light;

    机译:Ag / ZnO;花状形态;水热法;表面等离子体共振;光催化;游离氧自由基;可见光;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号