首页> 外文期刊>Applied Surface Science >Ultrafine Sn nanoparticles embedded in shell of N-doped hollow carbon spheres as high rate anode for lithium-ion batteries
【24h】

Ultrafine Sn nanoparticles embedded in shell of N-doped hollow carbon spheres as high rate anode for lithium-ion batteries

机译:嵌入N掺杂空心碳球壳中的超细Sn纳米颗粒作为锂离子电池的高倍率阳极

获取原文
获取原文并翻译 | 示例
           

摘要

A novel reversible interaction in polymeric nanoparticles is used to induce hollow Sn4+-MOPs. Then ultrafine Sn nanoparticles uniformly embedded in shell of N-doped hollow carbon spheres is successfully synthesized by pyrolysis of the Sn4+-MOPs precursor. In this architecture, the N-doped carbon shells can effectively avoid the direct exposure of embedded Sn nanoparticles to the electrolyte and efficiently accommodate the volume change of Sn nanoparticles. Furthermore, the hollow structure of carbon sphere can prevent Sn nanoparticles aggregation over repeated cycling and shorten the diffusion path of both electrons and ions. As a consequence, this N-doped hollow Sn/C anode delivers a reversible capacity of 606 mA h g(-1) at a current density of 0.2 A g(-1) after 250 cycles and a reversible capacity of 221 mA h g(-1) even at a much higher current density of 10 A g(-1), which are much better than those of pure Sn nanoparticles. The desirable cyclic stability and rate capability were attributed to the unique architecture that provided fast pathway for electron transport and simultaneously solved the major issues of Sn-based anodes, such as pulverization, aggregation and loss of electrical contact. (C) 2017 Published by Elsevier B.V.
机译:聚合物纳米粒子中的新型可逆相互作用被用于诱导空心Sn4 + -MOP。通过对Sn4 + -MOPs前驱体的热解,成功地合成了均匀嵌入N掺杂空心碳球壳中的超细Sn纳米颗粒。在这种体系结构中,N掺杂碳壳可以有效避免嵌入的Sn纳米颗粒直接暴露于电解质,并有效地容纳Sn纳米颗粒的体积变化。此外,碳球的中空结构可以防止Sn纳米粒子在重复循环中聚集,并缩短电子和离子的扩散路径。结果,这种N掺杂空心Sn / C阳极经过250个循环后,在电流密度为0.2 A g(-1)时可逆容量为606 mA hg(-1),可逆容量为221 mA hg(-)。 1)甚至在10 A g(-1)的更高电流密度下,也比纯Sn纳米颗粒的电流密度要好得多。理想的循环稳定性和速率能力归因于独特的体系结构,该体系结构提供了电子传输的快速途径,同时解决了锡基阳极的主要问题,例如粉化,聚集和电接触损失。 (C)2017由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号