首页> 外文期刊>Applied Surface Science >Picosecond laser micromachining prior to FIB milling for electronic microscopy sample preparation
【24h】

Picosecond laser micromachining prior to FIB milling for electronic microscopy sample preparation

机译:FIB铣削之前的皮秒激光微加工,用于电子显微镜样品制备

获取原文
获取原文并翻译 | 示例
           

摘要

In order to check the manufacturing quality of electronic components using electron microscopy, the area of interest must be exposed. This requires the removal of a large quantity of matter without damaging the surrounding area. This step can be accomplished using ion milling but the processing can last a few hours. In order to accelerate the preparation of the samples, picosecond laser micromachining prior to Focused Ion Beam polishing is envisioned. Laser ablation allows the fast removal of matter but induces damages around the ablated area. Therefore the process has to be optimized in order to limit the size of both the heat affected zone and induced dislocation zone. For this purpose, cavities have been engraved in silicon and in electronic components, using a linearly polarized picosecond laser (similar to 50 ps) at three different wavelengths (343, 515 and 1030 nm). Results showed that the cross sectional shapes and the surface topologies can be tuned by the laser fluence and the number of pulses. Clear cross sections of bumps and cavity openings, exposing multilayer interfaces, are demonstrated. The silicon removal rates, tuned by the applied energy density, have been measured. Removal rates achieved at 200 kHz were typically hundred times higher than those achieved by ion milling and the best efficiency was obtained at 343 nm. (C) 2016 Elsevier B.V. All rights reserved.
机译:为了使用电子显微镜检查电子组件的制造质量,必须暴露感兴趣的区域。这要求去除大量物质而不损害周围区域。可以使用离子铣削完成此步骤,但处理过程可持续几个小时。为了加速样品的制备,可以设想在聚焦离子束抛光之前先进行皮秒激光微加工。激光烧蚀可以快速清除物质,但会在烧蚀区域周围造成损坏。因此,必须优化工艺以限制热影响区和诱发位错区的大小。为此,已使用线性偏振皮秒激光(近似50 ps)在三种不同的波长(343、515和1030 nm)上在硅和电子元件中雕刻了空腔。结果表明,可以通过激光注量和脉冲数来调整横截面形状和表面拓扑。展示了凸点和空腔开口的清晰横截面,暴露了多层界面。已经测量了通过施加的能量密度调整的硅去除速率。在200 kHz处获得的去除率通常比离子磨获得的去除率高一百倍,并且在343 nm处可获得最佳效率。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号