首页> 外文期刊>Applied Surface Science >Atomistic modeling of β-Sn surface energies and adatom diffusivity
【24h】

Atomistic modeling of β-Sn surface energies and adatom diffusivity

机译:β-Sn表面能和原子扩散系数的原子建模

获取原文
获取原文并翻译 | 示例
           

摘要

Energies for low number Miller index surfaces of β-Sn (b.c.t. structure) were computed and the (100) plane was found to have the lowest un-relaxed energy of 0.0497 eV/A~2. We then used the Dimer method to find mechanisms and corresponding activation energies, E_A, for a Sn adatom moving on a β-Sn (100) surface. After extensive dimer searches and comparison to long molecular dynamics simulations, we conclude that two simple hopping mechanisms dominate transitions on this surface. For each, we determined hopping rates of the adatom using transition state theory and computed its tracer diffusivity. A hop of the adatom in the lattice c-direction gives D_(300k) = 1.893 × 10~(-06) cm~2/s (E_A = 0.1493 eV), while in the lattice α-direction D_(300k) = 3.994 × 10~(-06) cm~2/s (E_A = 0.1138 eV). When compared to studies on the existence of low energy multi-atom adatom diffusion on Cu and Al (100), we assert that β-Sn's successive (200) plane layering in the [100] direction provides for significantly lower activation energies and may contribute to the inability to locate any concerted atomic motion mechanisms.
机译:计算了β-Sn(b.c.t.结构)的低密勒指数表面的能量,发现(100)平面的最低非松弛能量为0.0497 eV / A〜2。然后,我们使用Dimer方法找到在β-Sn(100)表面移动的Sn原子的机理和相应的活化能E_A。经过广泛的二聚体搜索并与长分子动力学模拟进行比较,我们得出结论,两个简单的跳跃机制主导了该表面上的跃迁。对于每一个,我们使用过渡态理论确定了原子的跳跃率,并计算了其示踪剂的扩散率。原子在晶格c方向上的跳跃为D_(300k)= 1.893×10〜(-06)cm〜2 / s(E_A = 0.1493 eV),而在晶格α方向上D_(300k)= 3.994 ×10〜(-06)cm〜2 / s(E_A = 0.1138 eV)。与关于在Cu和Al(100)上存在低能多原子吸附原子扩散的研究进行比较时,我们断言β-Sn在[100]方向上连续(200)的平面分层可显着降低活化能,并且可能有助于无法定位任何协调的原子运动机制。

著录项

  • 来源
    《Applied Surface Science》 |2010年第13期|p.4402-4407|共6页
  • 作者单位

    Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;

    Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;

    Electronics Packaging Laboratory, Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;

    Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    tin surface diffusion; tin surface energy; electromigration;

    机译:锡表面扩散;锡表面能电迁移;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号