首页> 外文期刊>Applied Surface Science >The role of microstructure in nanocrystalline conformal Co_(0.9)W_(0.02)P_(0.08) diffusion barriers for copper metallization
【24h】

The role of microstructure in nanocrystalline conformal Co_(0.9)W_(0.02)P_(0.08) diffusion barriers for copper metallization

机译:微观结构在铜金属化纳米共形Co_(0.9)W_(0.02)P_(0.08)扩散阻挡层中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Electroless deposition of diffusion barriers for Cu metallization is an attractive process as it is selective, deposits conformal films at a low temperature and enables seedless Cu deposition. We demonstrate electroless deposition of conformal, ultra-thin (~10 nm thick) films of Co_(0.9)W_(0.02)P_(0.08). ElectrolessCo_(0.9)W_(0.02)P_(0.08) is an effective barrier against Cu diffusion up to 450℃ as opposed to physical vapor deposited (PVD) Co, which is a poor barrier. In this study, the role of microstructure in determining the barrier properties is discussed. The microstructure of the as-deposited layers consists of nanocrystallites of hexagonal close-packed (hcp) Co and an amorphous CoWP component. The amorphous component crystallizes at approximately 290℃ to hcp Co. The orthorhombic CO_2P phase nucleates at 420℃, while the majority phase remains hcp Co. Since we have found that up to 450℃ there is no phase formation between Cu and the Co_(0.9)W_(0.02)P_(0.08) film, we conclude that the mechanism of barrier failure is grain boundaries diffusion. The dependance of Cu grain boundary diffusivity on the microstructure is qualitatively demonstrated by comparing between electroless deposited Co_(0.9)W_(0.02)P_(0.08), Co_(0.9)P_(0.1) and PVD cobalt. Secondary ion mass spectrometry depth profile measurements were performed on the films after subjecting them to anneals at 400℃ resulting in type-C Cu grain boundary diffusion. The Cu diffusivity in the Co_(0.9)W_(0.02)P_(0.08) film is lower than in Co_(0.9)P_(0.1), and substantially lower than in PVD Co. The difference in Cu diffusivity is explained by varying degrees of grain boundaries' passivation due to the P and W alloying elements enriching the grain boundaries. This passivation effect is more pronounced in the Co_(0.9)W_(0.02)P_(0.08) films.
机译:用于铜金属化的扩散阻挡层的化学沉积是一个有吸引力的过程,因为它具有选择性,可以在低温下沉积保形膜,并可以进行无籽铜沉积。我们证明了Co_(0.9)W_(0.02)P_(0.08)的保形,超薄(约10 nm厚)膜的化学沉积。化学镀Co_(0.9)W_(0.02)P_(0.08)是对Cu扩散至450℃的有效阻挡层,而物理气相沉积(PVD)Co则是较差的阻挡层。在这项研究中,讨论了微结构在确定阻隔性能中的作用。沉积层的微观结构由六方密堆积(hcp)Co和非晶CoWP组分的纳米微晶组成。非晶态组分在大约290℃时结晶为hcpCo。正交晶CO_2P相在420℃时成核,而大多数相仍为hcpCo。由于我们发现在450℃以下,Cu与Co_(0.9 )W_(0.02)P_(0.08)膜,我们得出的结论是,势垒破坏的机理是晶界扩散。通过化学沉积Co_(0.9)W_(0.02)P_(0.08),Co_(0.9)P_(0.1)和PVD钴之间的比较,定性地证明了Cu晶界扩散率对显微组织的依赖性。薄膜在400℃退火后进行二次离子质谱深度分布测量,从而导致C型Cu晶界扩散。 Co_(0.9)W_(0.02)P_(0.08)膜中的Cu扩散率低于Co_(0.9)P_(0.1)中的Cu扩散率,并且远低于PVD Co中的Cu扩散率。 P和W合金元素丰富了晶界,使晶界钝化。这种钝化效果在Co_(0.9)W_(0.02)P_(0.08)薄膜中更为明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号