首页> 外文期刊>Applied Surface Science >Ultra-fine surface machining of glass using laser-produced charged particles
【24h】

Ultra-fine surface machining of glass using laser-produced charged particles

机译:使用激光产生的带电粒子对玻璃进行超精细表面加工

获取原文
获取原文并翻译 | 示例
           

摘要

Ultra-fine machining of glass substrates using charged particles from laser-produced metal plasma is reported. Since the metal target exhibits high efficiency of linear absorption of nanosecond 532 nm laser irradiation, the threshold fluence for machining the glass substrate is lower than 1.2 J/cm~2. Pulse energy of 5-8 μJ/pulse is adequate for this high-precision surface machining process. The optimal parameters for the superior quality etching in the glass material was produced using brass plasma at a laser fluence from 3.0 to 4.5 J/cm~2 and maintaining the seperation of 20-40 μm between the glass substrate and the metal shim. It is the impingement of the high-temperature, high-speed electrons and low-energy ions in the under-dense region of the laser-produced plasma, rather than high-energy photons, that is responsible for this high-precision machining. If the glass substrate was placed in the over-dense region of the plasma, the high pressure and the shock wave generated due to the interaction causes damage to the machined surface. Our experiments further demonstrate that, using this process, a focused laser beam integrated with a CAD-based scanning motion can be used effectively to generate complex and highly precise microfeatures on glass substrate.
机译:据报道,使用激光产生的金属等离子体中的带电粒子对玻璃基板进行了超精细加工。由于金属靶材表现出对纳秒532 nm激光辐照的线性吸收的高效率,因此加工玻璃基板的阈值通量低于1.2 J / cm〜2。 5-8μJ/脉冲的脉冲能量足以满足这种高精度表面加工过程的需要。使用黄铜等离子在3.0至4.5 J / cm〜2的激光注量下,并在玻璃基板和金属垫片之间保持20-40μm的间距下,可产生用于玻璃材料中优质蚀刻的最佳参数。造成这种高精度加工的原因是,在激光产生的等离子体的低密度区域而不是高能光子的高温,高速电子和低能离子的撞击。如果将玻璃基板放置在等离子体的过密区域中,则由于相互作用而产生的高压和冲击波会损坏加工表面。我们的实验进一步证明,使用此过程,结合了基于CAD的扫描运动的聚焦激光束可以有效地用于在玻璃基板上生成复杂且高度精确的微特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号