首页> 外文期刊>Applied Surface Science >Molecular investigations of tripeptide adsorption onto TiO_2 surfaces: Synergetic effects of surface nanostructure, hydroxylation and bioactive ions
【24h】

Molecular investigations of tripeptide adsorption onto TiO_2 surfaces: Synergetic effects of surface nanostructure, hydroxylation and bioactive ions

机译:三肽吸附到TiO_2表面上的分子研究:表面纳米结构,羟基化和生物活性离子的协同作用

获取原文
获取原文并翻译 | 示例
           

摘要

Micro-ano-topographies on the surface of titanium-based biomaterials are critical features responsible for protein adsorptions, and investigations into the underlying molecular mechanisms are essential to improving the biocompatibility of titanium-based biomaterials. In the present work, classical molecular dynamics simulations were conducted to study the synergetic influences of surface nanostructures, hydroxylation states and bioactive ions on the adsorption of collagen tripeptides onto the TiO2 surfaces. The nanostructures on the non-hydroxylated surface, i.e., grooves or ridges, favor the formation of highly ordered layers of water molecules at the surface, which create strong barriers for stable adsorptions of tripeptides. Surface hydroxylation, however, makes the water distribution less ordered and more dispersive on hydroxylated surfaces. Thus, tripeptides are able to adsorb stably on the hydroxylated grooves, by passing through the loosely packed water layers and forming hydrogen bonds with the surface hydroxyls. Moreover, the hydroxylation on the grooved surfaces also facilitates the aggregation of calcium/phosphate ions. Consequently, the intermediate calcium/phosphate ions reduce the energy barriers of compact water layers and provide active sites for tripeptide adsorption. The present computational study provides insights into the intrinsic mechanisms of peptide adsorptions on the nanostructured Ti-based biomaterial surface.
机译:基于钛的生物材料表面的微/纳米地形是负责蛋白质吸附的关键特征,并且对潜在的分子机制的研究对于提高基于钛的生物材料的生物相容性至关重要。在本作工作中,进行了经典的分子动力学模拟,以研究表面纳米结构,羟基化状态和生物活性离子对胶原三肽在TiO 2表面上吸附的协同影响。非羟基化表面上的纳米结构,即凹槽或脊,有利于在表面上形成高度有序的水分子层,其为三肽的稳定吸附产生强烈的屏障。然而,表面羟化使水分布在羟基化表面上更少有序并且更分散。因此,通过穿过松散的填充水层并与表面羟基形成氢键,三肽能够稳定地吸附在羟基化的槽上。此外,凹槽表面上的羟基化还促进了钙/磷酸盐离子的聚集。因此,中间钙/磷酸盐离子减少了紧凑型水层的能量屏障,并提供了三肽吸附的活性位点。本计算研究为肽吸附在纳米结构基碱基生物材料表面上的内在机制提供了见解。

著录项

  • 来源
    《Applied Surface Science》 |2020年第may15期|145713.1-145713.10|共10页
  • 作者单位

    Dalian Maritime Univ Dept Mech Engn Dalian 116026 Peoples R China;

    Vanderbilt Univ Dept Chem & Biomol Engn Nashville TN 37235 USA|Vanderbilt Univ Multiscale Modeling & Simulat Ctr Nashville TN 37235 USA;

    Harbin Inst Technol Postdoctoral Stn Mat Sci & Engn State Key Lab Robot & Syst Harbin 150001 Heilongjiang Peoples R China;

    Dalian Maritime Univ Dept Mech Engn Dalian 116026 Peoples R China;

    Vanderbilt Univ Dept Chem & Biomol Engn Nashville TN 37235 USA|Vanderbilt Univ Multiscale Modeling & Simulat Ctr Nashville TN 37235 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Molecular dynamics simulation; Nanostructures; Surface hydroxylation; Calcium/phosphate ions; Peptide adsorption;

    机译:分子动力学模拟;纳米结构;表面羟化;钙/磷酸盐离子;肽吸附;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号