首页> 外文期刊>Applied Surface Science >Enhancing lithium storage performance by strongly binding silicon nanoparticles sandwiching between spherical graphene
【24h】

Enhancing lithium storage performance by strongly binding silicon nanoparticles sandwiching between spherical graphene

机译:通过夹在球形石墨烯之间的硅纳米粒子强的硅纳米颗粒增强锂储存性能

获取原文
获取原文并翻译 | 示例
           

摘要

In order to solve problematic issues of silicon-based anode such as agglomeration, poor conductivity and volumetric expansion, a novel hollow spherical composite with small-sized silicon nanoparticles sandwiching in between spherical graphene shells with chemical bonding has been constructed through electrostatic layer-by layer assembly and subsequent in-situ aluminothermic reduction. This kind of elaborately designed sandwich structure not only inhibits aggregation and volume expansion of the silicon nanoparticles effectively, but also shorten electronic and ionic transport channels. Especially, the covalent binding between active Si component and conductive graphene matrix can significantly enhance the structural integrity and facilitate the reaction kinetics during repeated discharge/charge cycles. Benefiting from multiple merits, the proposed hollow sandwich spherical structured graphene/Si composite electrode delivers ultra-stable lithium storage performance with a high capacity of 1085.6 mAh g(-1) remained after 500 deep charge-discharge cycles at 100 mA g(-1). The dramatically enhanced electrochemical performance of the sandwich spherical structured graphene/Si composite shed light on its application potential as the promising anode candidate for next-generation lithium ion batteries with high energy/power densities and ultra-long span life.
机译:为了解决硅基阳极的问题问题,例如聚集,导电性和体积膨胀不良,具有通过静电层构成与化学键合的球形石墨烯壳中的小型硅纳米颗粒的新型中空球形复合材料,通过静电层构成静电层组装和随后的原位铝热减少。这种精心设计的夹层结构不仅抑制了硅纳米颗粒的聚集和体积膨胀,而且还缩短了电子和离子运输通道。特别地,活性Si组分和导电石墨烯基质之间的共价结合可以显着增强结构完整性,并在重复的放电/电荷循环期间促进反应动力学。从多功分中受益,所提出的空心夹心球形结构石墨烯/ Si复合电极在100mA g(-1)下500强度放电循环后,高容量为1085.6mahg(-1),仍然存在高容量的锂储存性能。(-1 )。显着增强了夹层球形结构石墨烯/ Si综合揭示其应用势的电化学性能,作为下一代锂离子电池具有高能量/功率密度和超长跨度寿命的阳极候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号