首页> 外文期刊>Aquatic Sciences >Sediment dynamics in the subaquatic channel of the Rhone delta (Lake Geneva, France/Switzerland)
【24h】

Sediment dynamics in the subaquatic channel of the Rhone delta (Lake Geneva, France/Switzerland)

机译:罗纳河三角洲水底河道中的沉积物动力学(日内瓦湖,法国/瑞士)

获取原文
获取原文并翻译 | 示例
           

摘要

With its smaller size, well-known boundary conditions, and the availability of detailed bathymetric data, Lake Geneva's subaquatic canyon in the Rhone Delta is an excellent analogue to understand sedimentary processes in deep-water submarine channels. A multidisciplinary research effort was undertaken to unravel the sediment dynamics in the active canyon. This approach included innovative coring using the Russian MIR sub-mersibles, in situ geotechnical tests, and geophysical, sedimentological, geochemical and radiometric analysis techniques. The canyon floor/levee complex is characterized by a classic turbiditic system with frequent spillover events. Sedimentary evolution in the active canyon is controlled by a complex interplay between erosion and sedimentation processes. In situ profiling of sediment strength in the upper layer was tested using a dynamic penetrometer and suggests that erosion is the governing mechanism in the proximal canyon floor while sedimentation dominates in the levee structure. Sedimentation rates progressively decrease down-channel along the levee structure, with accumulation exceeding 2.6 cm/year in the proximal levee. A decrease in the frequency of turbidites upwards along the canyon wall suggests a progressive confinement of the flow through time. The multi-proxy methodology has also enabled a qualitative slope-stability assessment in the levee structure. The rapid sediment loading, slope undercutting and over-steepening, and increased pore pressure due to high methane concentrations hint at a potential instability of the proximal levees. Furthermore, discrete sandy intervals show very high methane concentrations and low shear strength and thus could correspond to potentially weak layers prone to scarp failures.
机译:凭借其较小的尺寸,众所周知的边界条件以及详细的测深数据,位于罗纳河三角洲的日内瓦湖水下水峡谷是了解深水海底河道沉积过程的绝佳模拟。进行了多学科研究,以揭示活跃峡谷中的沉积物动力学。这种方法包括使用俄罗斯MIR潜水器进行创新取芯,现场岩土工程测试以及地球物理,沉积学,地球化学和辐射分析技术。峡谷底/堤防综合体的特点是经典的湍流系统,经常发生溢出事件。活动峡谷的沉积演化受侵蚀和沉积过程之间复杂的相互作用控制。使用动态渗透仪对上层的沉积物强度进行了现场分析,结果表明侵蚀是近端峡谷底的控制机制,而沉积物则主要在堤防结构中。沿堤防结构的下沉速度逐渐减小,近端堤防的堆积量每年超过2.6 cm。沿峡谷壁向上浊度降低的频率表明随着时间流的逐渐限制。多代理方法还可以对堤岸结构进行定性的边坡稳定性评估。由于高甲烷浓度,快速的沉积物加载,斜坡底切和过度加深以及孔隙压力的增加暗示了近端堤防的潜在不稳定性。此外,不连续的砂质层段显示出很高的甲烷浓度和很低的剪切强度,因此可能对应于容易出现断层破坏的潜在薄弱层。

著录项

  • 来源
    《Aquatic Sciences》 |2014年第1期|S73-S87|共15页
  • 作者单位

    Department of Earth Sciences, Environmental Sciences Institute (ISE), University of Geneva, 13 Rue des Maraichers, 1205 Geneve, Switzerland,Museo Nacional de Ciencias Naturales (MNCN/CSIC), Serrano 115bis, 28006 Madrid, Spain;

    Department of Earth Sciences, University of Zaragoza, c/Pedro Cerbuna, 12, 50009 Zaragoza, Spain;

    Institut F.-A-Forel, University of Geneva, 10 route de Suisse, 1290 Versoix, Switzerland;

    Eawag (Swiss Federal Institute of Aquatic Science and Technology), 133 UEberlandstrasse, 8600 Duebendorf, Switzerland;

    Ecological Engineering Laboratory (ECOL), Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland,CETMEF, Technopole Brest Iroise, 155 Rue Pierre Bouguer, 29280 Plouzane, France;

    MARUM, Centre for Marine and Environmental Sciences, University of Bremen, Leobener Str, 48359 Bremen, Germany;

    Eawag (Swiss Federal Institute of Aquatic Science and Technology), 133 UEberlandstrasse, 8600 Duebendorf, Switzerland;

    Department of Earth Sciences, Environmental Sciences Institute (ISE), University of Geneva, 13 Rue des Maraichers, 1205 Geneve, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Subaquatic channel; Sedimentary processes; Rhone delta; Levee architecture;

    机译:水下通道沉积过程;罗纳河三角洲;堤岸建筑;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号