首页> 外文期刊>Arabian Journal for Science and Engineering >On the Performance of Various Reynolds Stress Models in Resolving Non-equilibrium Features of Turbulent In-cylinder Engine Flows
【24h】

On the Performance of Various Reynolds Stress Models in Resolving Non-equilibrium Features of Turbulent In-cylinder Engine Flows

机译:各种雷诺应力模型在解决湍流缸内发动机流的非平衡特征方面的性能

获取原文
获取原文并翻译 | 示例
           

摘要

In highly transient turbulent flows, the energy cascade and related dissipation rate of energy are key factors which must be modeled precisely to obtain the accurate computational predictions. The flow in diesel engines specifically during compression stroke is quite transient, so most commonly used eddy viscosity based turbulence models fail to predict the transitional characteristics of these types of flow. This paper focuses on performance appraisal of three versions of Reynolds stress turbulence models in resolving non-equilibrium features and transitional characteristics of turbulent in-cylinder engine flows. Results indicate that although these turbulence models give the same prediction of averaged quantities of turbulent flows (i.e. mean flow kinetic energy), their results are totally different in calculating non-equilibrium features and the turbulent length scales. According to calculated results, incompressible Launder-Reece-Rodi and Naot second-moment closure models give unreal estimations of the turbulent integral length scale during compression stroke, while the modified Launder-Reece-Rodi model predictions have more similarity with physical trends.
机译:在高瞬态湍流中,能量级联和相关的能量耗散率是关键因素,必须对其进行精确建模才能获得准确的计算预测。特别是在压缩冲程期间,柴油发动机中的流动是相当短暂的,因此最常用的基于涡流粘度的湍流模型无法预测这些类型的流动的过渡特性。本文重点研究了三种版本的雷诺应力湍流模型在解决湍流缸内发动机流的非平衡特征和过渡特性方面的性能评估。结果表明,尽管这些湍流模型对湍流的平均数量(即平均流动能)给出了相同的预测,但它们在计算非平衡特征和湍流长度尺度时的结果完全不同。根据计算结果,不可压缩的Launder-Reece-Rodi和Naot第二矩闭合模型对压缩冲程期间的湍流积分长度尺度给出了不真实的估计,而经过修改的Launder-Reece-Rodi模型的预测与物理趋势更加相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号