首页> 外文期刊>Arabian Journal for Science and Engineering >Numerical Investigation on Static Behaviour of Steeland GFRP‑Reinforced ECC Link Slabs
【24h】

Numerical Investigation on Static Behaviour of Steeland GFRP‑Reinforced ECC Link Slabs

机译:石材静态行为的数值研究,GFRP加强ECC链路板的静态行为

获取原文
获取原文并翻译 | 示例
           

摘要

Innovative materials such as Engineered Cementitious Composite (ECC) with inherent crack control and corrosion resistant Glass Fibre-Reinforced Polymer (GFRP) bars are studied for implementation in joint-free bridges with link slab. The GFRPreinforced ECC link slab is tested experimentally under static monotonic loading and structural performance is compared with its steel-reinforced counterpart. Finite element (FE) models for steel-/GFRP-reinforced link slab are developed taking into consideration of ECC and GFRP material properties and their performance validated based on experimental results. FE models are found to simulate the behaviour of link slabs reasonably well (in terms of predicting load-deformation response, maximum/peak load capacity, concrete or steel/GFRP bar strain development, concrete cracking and failure modes) as the experimental and FE predicted results/response are found to be in good agreement. FE model is then used to conduct a parametric study for the optimization of GFRP-reinforced ECC link slabs design parameters (such as GFRP/ECC modulus of elasticity, GFRP rupture strength, ECC compressive/flexural strength/maximum sand grain size and link slab reinforcement ratio) to study their influence on structural performance. GFRP-reinforced link slab shows higher load and deflection/ ductility capacity compared to their steel-reinforced counterparts. Developed FE models are found to reasonably predict load capacity of ECC link slabs within 90% to 97% (for GFFRP reinforced) and 82% to 92% (for steel reinforced) of the experimental values. Both GFRP- and steel-reinforced link slabs exhibited their potential for the construction of joint-free bridges and develop FE models can be used as tools for the optimization of design variables.
机译:研究了具有固有裂纹控制和耐腐蚀玻璃纤维增​​强聚合物(GFRP)棒的创新材料,如具有固有裂缝控制和耐腐蚀的玻璃纤维增​​强聚合物(GFRP)棒,用于在带有链路板的无联网桥梁中的实施。在静态单调负载下通过实验测试GFRRPREPFORCORCECCORCED板坯,并将结构性能与其钢加固对应物进行比较。考虑到ECC和GFRP材料特性,开发了用于钢材/ GFRP加强连杆板的有限元(FE)模型及其基于实验结果验证的性能。发现FE模型可以合理地模拟链接板的行为(在预测负载变形响应,最大/峰值负载能力,混凝土或钢/ GFRP条形条形,混凝土开裂和故障模式)作为实验和FE预测的结果/响应已达成良好。然后使用Fe模型来进行参数化,用于优化GFRP加强ECC链路板设计参数(例如GFRP / ECC弹性模量,GFRP破裂强度,ECC压缩/弯曲强度/最大砂粒尺寸和连杆增强件比例)研究其对结构性能的影响。与其钢筋相比,GFRP加强链路板表示较高的负载和偏转/延展性容量。发现开发的FE模型可合理地预测ECC链路板的90%以内的载荷能力(对于GFFRP加固),82%至92%(用于钢筋)的实验值。 GFRP和钢筋连杆板都展示了它们对施工的潜力,并且开发FE模型可用作设计变量优化的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号