...
首页> 外文期刊>Artificial Life >Plant-Herbivore Coevolution in a Spatially and Genetically Explicit Model
【24h】

Plant-Herbivore Coevolution in a Spatially and Genetically Explicit Model

机译:空间和遗传显式模型中的植物-草食动物共同进化

获取原文
获取原文并翻译 | 示例
           

摘要

A coevolutionary model was developed to test interactions between diploid plants and herbivores using genetic algorithms on a spatial lattice. Simulated plants carried defensive genes and herbivores carried genes coding for resistance (metabolism of herbivore defense) in gene-for-gene synchrony. Collectively these genes are referred to as defensive/resistance genes (DR-genes). Genes were linked on chromosomes. Regulatory genes modified both dominance at these DR loci and the tradeoff cost involved in producing either defense or resistance. We tested the effects of varying a) the number of DR-loci, b) the ratio of the number of herbivore:plant generations, c) the shape (square vs. long and thin) and function (torus vs. island) of the lattice, and d) herbivore encounter rate on plant progeny dispersal distance. Increasing both the number of DR-genes and the ratio of herbivore:plant generations caused a tighter coevolutionary response between plants and herbivores. Plant defense was highly sensitive to herbivory but not to increasing encounter rates. Plant DR-genes were selectively disadvantageous with only one lucus but selectively favored with two or more loci. Increasing the number of herbivore:plant generations caused increased fluctuations in herbivore resistance gene frequencies and a decrease in the lag time in herbivore response to changes in plant defensive gene frequencies. The relationship between heterotroph and autotroph DR-genes increased exponentially with increasing numbers of DR-loci. This relationship suggests that autotrophs benefit from increased diversity of defense that causes a relative increase in cost for the heterotrophs. The shape of the lattice interacted with lattice function, resulting in high species persistence on wraparound habitats and the greatest extinction likelihood on rectangular islands. Low to moderate herbivore encounter rates increased plant progeny dispersal distance while high herbivore encounter rates tended to reduce disp- rsal distance. The frequencies of genes coding for plant defense and herbivore resistance were dynamic for thousands of generations, despite the homogeneous lattice. This interaction may increase extinction probabilities in fragmented habitats.
机译:开发了一个协同进化模型,以使用空间网格上的遗传算法来测试二倍体植物和草食动物之间的相互作用。模拟植物带有防御基因,而草食动物则带有编码抗性(草食动物防御代谢)的基因。这些基因统称为防御/抗性基因(DR基因)。基因在染色体上连锁。调节基因既修饰了这些DR基因座的优势,又改变了产生防御或抗性的权衡成本。我们测试了以下变化的影响:a)DR-loci的数量,b)草食动物:植物世代的比例,c)齿形的形状(方形与长而薄)和功能(对角与岛屿)。 d)食草动物在植物后代传播距离上的遭遇率。 DR基因的数量和草食动物:植物世代的比例增加导致植物和草食动物之间更紧密的协同进化反应。植物防御对食草高度敏感,但对增加遭遇率却不敏感。植物DR基因仅对一个基因座不利,而对两个或多个基因座有利。食草动物:植物世代的增加导致食草动物抗性基因频率的波动增加,并且食草动物对植物防御基因频率变化的反应的滞后时间减少。异养型和自养型DR基因之间的关系随DR位置的数量呈指数增长。这种关系表明自养生物受益于防御多样性的增加,这导致了异养生物成本的相对增加。晶格的形状与晶格功能相互作用,导致高的物种在环绕生境中的持久性和在矩形岛上的最大灭绝可能性。低至中度的草食动物相遇率增加了植物后代的传播距离,而高的草食动物相遇率则倾向于减小分布距离。尽管具有均匀的晶格,但编码植物防御和草食动物抗性的基因的频率却是数千代的动态变化。这种相互作用可能会增加零散生境中的灭绝概率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号