首页> 外文期刊>Astrobiology >An Energy Balance Concept for Habitability
【24h】

An Energy Balance Concept for Habitability

机译:居住环境的能量平衡概念

获取原文
获取原文并翻译 | 示例
           

摘要

Habitability can be formulated as a balance between the biological demand for energy and the corresponding potential for meeting that demand by transduction of energy from the environment into biological process. The biological demand for energy is manifest in two requirements, analogous to the voltage and power requirements of an electrical device, which must both be met if life is to be supported. These requirements exhibit discrete (non-zero) minima whose magnitude is set by the biochemistry in question, and they are increased in quantifiable fashion by (ⅰ) deviations from biochemically optimal physical and chemical conditions and (ⅱ) energy-expending solutions to problems of resource limitation. The possible rate of energy transduction is constrained by (ⅰ) the availability of usable free energy sources in the environment, (ⅱ) limitations on transport of those sources into the cell, (ⅲ) upper limits on the rate at which energy can be stored, transported, and subsequently liberated by biochemical mechanisms (e.g., enzyme saturation effects), and (ⅳ) upper limits imposed by an inability to use "power" and "voltage" at levels that cause material breakdown. A system is habitable when the realized rate of energy transduction equals or exceeds the biological demand for energy. For systems in which water availability is considered a key aspect of habitability (e.g., Mars), the energy balance construct imposes additional, quantitative constraints that may help to prioritize targets in search-for-life missions. Because the biological need for energy is universal, the energy balance construct also helps to constrain habitability in systems (e.g., those envisioned to use solvents other than water) for which little constraint currently exists.
机译:可居住性可以表述为生物对能源的需求与通过将能量从环境转换为生物过程来满足该需求的相应潜力之间的平衡。对能量的生物需求体现在两个需求中,类似于电气设备的电压和功率需求,如果要维持生命,则必须同时满足这两个需求。这些要求表现出离散的(非零)最小值,其大小由所讨论的生物化学确定,并且通过以下方式以可量化的方式增加:(ⅰ)偏离生化最佳物理和化学条件,以及(ⅱ)耗能解决方案资源限制。可能的能量传导速率受到以下因素的限制:(ⅱ)环境中可用的自由能源的可用性,(ⅱ)这些能源进入细胞的运输限制,(ⅲ)能量存储速率的上限,运输和随后通过生化机制释放(例如,酶饱和效应),以及(ⅳ)由于无法使用“功率”和“电压”而导致材料分解的水平导致的上限。当能量转换的实现速率等于或超过生物对能量的需求时,该系统是可居住的。对于将水的可利用性视为宜居性的一个关键方面的系统(例如火星),能量平衡构造施加了额外的定量约束,这可能有助于在寻找生命的任务中确定目标的优先级。因为生物对能量的需求是普遍的,所以能量平衡构造还有助于限制当前几乎没有约束的系统(例如,设想使用除水以外的溶剂的那些系统)中的可居住性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号