首页> 外文期刊>Astrobiology >Lithopanspermia in Star-Forming Clusters
【24h】

Lithopanspermia in Star-Forming Clusters

机译:恒星形成星团中的脂溢精

获取原文
获取原文并翻译 | 示例
           

摘要

This paper considers the lithopanspermia hypothesis in star-forming groups and clusters, where the chances of biological material spreading from one solar system to another is greatly enhanced (relative to action in the field) because of the close proximity of the systems and lower relative velocities. These effects more than compensate for the reduced time spent in such crowded environments. This paper uses ~300,000 Monte Carlo scattering calculations to determine the cross sections <σ_(cap)> for rocks to be captured by binaries and provides fitting formulae for other applications. We assess the odds of transfer as a function of the ejection speed v_(eject) and number N_* of members in the birth aggregate. The odds of any given ejected meteoroid being recaptured by another solar system are relatively low, about 1:10~3-10~6 over the expected range of ejection speeds and cluster sizes. Because the number of ejected rocks (with mass m > 10 kg) per system can be large, N_R ~ 10~(16), virtually all solar systems are likely to share rocky ejecta with all of the other solar systems in their birth cluster. The number of ejected rocks that carry living microorganisms is much smaller and less certain, but we estimate that N_B ~ 10~7 rocks can be ejected from a biologically active solar system. For typical birth environments, the capture of life-bearing rocks is expected to occur N_(bio) ≈ 10-16,000 times (per cluster), depending on the ejection speeds. Only a small fraction (f_(imp) ~ 10~(-4)) of the captured rocks impact the surfaces of terrestrial planets, so that N_(lps) ≈ 10~(-3)-1.6 lithopanspermia events are expected per cluster (under favorable conditions). Finally, we discuss the question of internal versus external seeding of clusters and the possibility of Earth seeding young clusters over its biologically active lifetime.
机译:本文考虑了恒星形成群和星团中的精子症假说,由于该系统非常接近且相对速度较低,因此生物物质从一个太阳系扩散到另一个太阳系的机会大大增加(相对于野外活动而言)。 。这些效果可以弥补在这种拥挤的环境中所花费的时间减少。本文使用〜300,000蒙特卡罗散射计算法来确定将要被二进制捕获的岩石的横截面<σ_(cap)>,并为其他应用提供拟合公式。我们根据转移速度v_(eject)和出生总数中成员数N_ *来评估转移几率。任何给定的喷射流星体被另一个太阳系捕获的几率都相对较低,在预期的喷射速度和星团大小范围内约为1:10〜3-10〜6。由于每个系统射出的岩石的数量(质量m> 10 kg)可能很大,N_R〜10〜(16),因此实际上所有太阳系都可能与它们出生集群中的所有其他太阳系共享岩石射出体。携带生命微生物的排出岩石的数量要少得多,并且不确定性,但是我们估计N_B〜10〜7块岩石可以从具有生物活性的太阳系中排出。对于典型的出生环境,根据射出速度的不同,预计捕获生命的岩石会发生N_(bio)≈10-16,000次(每个簇)。捕获的岩石中只有一小部分(f_(imp)〜10〜(-4))撞击地面行星的表面,因此每个星团预计会发生N_(lps)≈10〜(-3)-1.6紫精事件(在有利的条件下)。最后,我们讨论了群集内部和外部播种的问题,以及地球在其生物活跃寿命中播种年轻群集的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号