...
首页> 外文期刊>Acta astronautica >Optimal commands based multi-stage drag de-orbit design for a tethered system during large space debris removal
【24h】

Optimal commands based multi-stage drag de-orbit design for a tethered system during large space debris removal

机译:在大型空间碎片清除过程中,用于系留系统的基于最优命令的多级阻力反轨道设计

获取原文
获取原文并翻译 | 示例
           

摘要

There is a serious challenge to the safe operation of orbiting satellites as the number of space debris increases for its high risks and the possible crippling effects of collisions. Consequently, the active removal scenario of space debris has drawn wide attention in recent years, and a tethered system is considered to be a promising method for its large operating distance and low power consumption. However, the flexible tether of the system will bring the coupling of the orbit motion, the sway motion and the variation of large debris attitude, which brings about great danger in de-orbiting phase and a huge challenge in later control. Hence, aiming to de-orbit large space debris safely with a tethered system, a multi-stage horizontal drag de-orbit strategy that consists of two stages is designed. At the first stage, the orbit altitude is rose with a tug thrust whose direction is consistent with the tether, which does not provoke the in-plane oscillation of the tethered system. At the second stage, the orbit is circularized by changing the size and direction of the tug thrust. Especially, optimal commands based on the minimum of tangling risks are planned using Gauss pseudospectral method to avoid target tangling and achieve decoupling of the orbit motion, the sway motion and the variation of the target attitude. Then, the stable attitude control of the tethered system is achieved by designing a hybrid fuzzy adaptive proportion differentiation (PD) with hierarchical sliding-mode controller (HSMC) in the de-orbit process. Finally, numerical simulation is implemented to verify the effectiveness of the proposed de-orbit design.
机译:由于空间碎片的高风险和碰撞可能造成的破坏效应,这对轨道卫星的安全运行提出了严峻的挑战。因此,近年来,主动清除空间碎片的方案引起了广泛关注,并且系留系统由于其较大的工作距离和较低的功耗而被认为是一种有前途的方法。然而,系统的柔性束缚将带来轨道运动,摇摆运动和大碎片姿态的变化的耦合,这在去轨道阶段带来了极大的危险,并在以后的控制中带来了巨大的挑战。因此,为了通过束缚系统安全地使大空间碎片轨道化,设计了一个由两级组成的多级水平阻力反轨道策略。在第一阶段,随着拖船推力的上升,其轨道高度与系绳的方向一致,这不会引起系绳系统的面内振荡。在第二阶段,通过改变拖船推力的大小和方向使轨道圆形化。特别是,使用高斯伪谱方法计划了基于最小纠缠风险的最优命令,以避免目标纠缠并实现轨道运动,摇摆运动和目标姿态变化的解耦。然后,通过在离轨过程中设计带有分层滑模控制器(HSMC)的混合模糊自适应比例微分(PD)来实现系链系统的稳定姿态控制。最后,通过数值模拟验证了提出的离轨设计的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号