...
首页> 外文期刊>Acta astronautica >Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud
【24h】

Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud

机译:有限元平滑粒子流体动力学自适应方法在模拟碎片云中

获取原文
获取原文并翻译 | 示例
           

摘要

The meshless algorithms, especially the smoothed particle hydrodynamics (SPH), are attempted to solve the hypervelocity impact (HVI) problem. However, several limitations of SPH exist in the current studies, such as the tensile instability, the material boundary uncertainty, and the difficulty in defining boundaries. Furthermore, it cannot accurately provide the parameters of the generated fragments. In this paper, we formulate the finite element-smoothed particle hydrodynamics (FEM-SPH) adaptive method to solve the HVI problem by LS-DYNA. It combines the advantages of FEM and SPH by transforming the failed elements into the SPH particles during the simulation. The debris cloud shape is represented by the distribution of the particles in SPH and the exact fragment parameters in FEM, including geometry, temperature, energy, and distribution. By analyzing and optimizing the implementation method, the contact and coupling algorithm, and calculation parameters, we reproduce the experimental results by Piekutowski [39,40] in the numerical simulation. Based on the proposed three typical shapes of the fragments, a systematic statistical analysis is proposed to classify the fragments and analyze their parameters, including speed, momentum, and energy. Risky fragments, i.e., the fragments with large size and high speed, are selected from the overall fragments. We further study the distribution of risky fragments with the details of the evolution in the space and time, which paves the way for further systematic research on the subsequent impact of the debris cloud. Our work shows that the method has a significant and wide application to the debris cloud simulation. The current algorithm can be applied to simulate the Whipple shields with complex structures and advanced material, e.g., sandwich materials, composite materials, foam materials, and gradient materials, or analyze the implosion and fragmentation warhead.
机译:无比的算法,尤其是平滑的粒子流体动力学(SPH),试图解决超细损伤的影响(HVI)问题。然而,目前的研究中存在若干限制,例如拉伸不稳定,材料边界不确定性以及定义边界的难度。此外,它不能准确地提供所生成的片段的参数。在本文中,我们制定了LS-DYNA解决HVI问题的有限元平滑的粒子动力学(FEM-SPH)自适应方法。它通过在模拟期间将故障元素转换为SPH颗粒来结合有限元和SPH的优点。碎屑云形状由SPH中的颗粒分布和有限元中的精确片段参数表示,包括几何形状,温度,能量和分布。通过分析和优化实现方法,联系和耦合算法和计算参数,我们在数值模拟中通过PieKutowski [39,40]重现实验结果。基于所提出的三种典型形状的片段,提出了一种系统统计分析,以分类碎片并分析它们的参数,包括速度,动量和能量。危险的碎片,即具有大尺寸和高速的碎片,选自整个碎片。我们进一步研究了风险碎片的分布与空间和时间的进化细节,为进一步系统研究碎片云的进一步系统进行了途径。我们的工作表明,该方法对碎片云模拟具有重要且广泛的应用。目前算法可以应用于模拟具有复杂结构和先进材料的奶嘴,例如夹层材料,复合材料,泡沫材料和梯度材料,或分析内部内爆和碎片弹头。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号