首页> 外文期刊>The Astrophysical journal >MECHANISM OF MAGNETIC FLUX LOSS IN MOLECULAR CLOUDS
【24h】

MECHANISM OF MAGNETIC FLUX LOSS IN MOLECULAR CLOUDS

机译:分子团中磁通量损失的机理

获取原文
获取原文并翻译 | 示例
           

摘要

We investigate the detailed processes at work in the drift of magnetic fields in molecular clouds. To the fric-tional force, whereby the magnetic force is transmitted to neutral molecules, ions contribute more than half only at cloud densities n_H approx< 10~4 cm~(-3), and charged grains contribute more than about 90% at n_H approx> 10~6 cm~(-3). Thus, grains play a decisive role in the process of magnetic flux loss. Approximating the flux loss time t_B by a power law t_B ∝ B~(-γ), where B is the mean field strength in the cloud, we find γ≈2, characteristic of ambipo-lar diffusion, only at n_H approx< 10~7 cm~(-3), at which ions and the smallest grains are pretty well frozen to the magnetic fields. At n_H > 10~7 cm~(-3), γ decreases steeply with n_H, and finally at n_H≈n_(dec)≈a few x 10~(11) cm~(-3), at which the magnetic fields effectively decouple from the gas, γ 1 is attained, reminiscent of Ohmic dissipation, although flux loss occurs about 10 times faster than by pure Ohmic dissipation. Because even ions are not very well frozen at n_H > 10~7 cm~(-3), ions and grains drift slower than the magnetic fields. This insufficient freezing makes t_B more and more insensitive to B as n_H increases. Ohmic dissipation is dominant only at n_H approx> x 10~(12) cm~(-3). While ions and electrons drift in the direction of the magnetic force at all densities, grains of opposite charges drift in opposite directions at high densities, at which grains are major contributors to the frictional force. Although magnetic flux loss occurs significantly faster than by Ohmic dissipation even at very high densities, such as n_H≈n_(dec), the process going on at high densities is quite different from ambipolar diffusion, in which particles of opposite charges are supposed to drift as one unit.
机译:我们调查了分子云中磁场漂移中工作的详细过程。对于摩擦力,磁力被传递到中性分子,离子仅在云密度n_H约<10〜4 cm〜(-3)时贡献一半以上,而带电粒子在n_H时贡献约90%以上大约> 10〜6 cm〜(-3)因此,晶粒在磁通量损失过程中起决定性作用。用幂律t_B ∝ B〜(-γ)近似通量损失时间t_B,其中B是云中的平均场强,我们发现γ≈2,是两面扩散的特征,仅在n_H大约<10〜 7 cm〜(-3),在此离子和最小的晶粒被很好地冻结在磁场中。在n_H> 10〜7 cm〜(-3)时,γ随n_H急剧减小,最终在n_H≈n_(dec)≈几x 10〜(11)cm〜(-3)时,磁场有效从气体中分离出来,达到γ 1,让人联想到欧姆耗散,尽管通量损失的发生速度比纯欧姆耗散快约10倍。因为即使离子在n_H> 10〜7 cm〜(-3)时也不能很好地冻结,所以离子和晶粒的漂移比磁场慢。随着n_H的增加,这种冻结不足使t_B对B越来越不敏感。欧姆耗散仅在n_H大约> x 10〜(12)cm〜(-3)时才占主导地位。尽管离子和电子在所有密度下都沿磁力方向漂移,但相反电荷的颗粒在高密度下却沿相反方向漂移,在这种情况下,颗粒是摩擦力的主要贡献者。尽管即使在非常高的密度(例如n_H≈n_(dec))下,磁通量损耗的发生速度也比欧姆耗散快得多,但在高密度下进行的过程与双极性扩散有很大不同,在双极性扩散中,相反电荷的粒子应该漂移作为一个单元。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号