首页> 外文期刊>The Astrophysical journal >PHYSICAL BIAS OF GALAXIES FROM LARGE-SCALE HYDRODYNAMIC SIMULATIONS
【24h】

PHYSICAL BIAS OF GALAXIES FROM LARGE-SCALE HYDRODYNAMIC SIMULATIONS

机译:大型水动力模拟的星系物理偏置

获取原文
获取原文并翻译 | 示例
           

摘要

We analyze a new large-scale (100 h~(-1) Mpc) numerical hydrodynamic simulation of the popular ACDM cosmological model, including in our treatment dark matter, gas, and star formation, on the basis of standard physical processes. The method, applied with a numerical resolution of < 200 h~(-1) kpc (which is still quite coarse for following individual galaxies, especially in dense regions), attempts to estimate where and when galaxies form. We then compare the smoothed galaxy distribution with the smoothed mass distribution to determine the " bias," defined as b ≡ (δM/M)_(gal)/(δM/M)_(total), on scales that are large compared to the code numerical resolution (on the basis of resolution tests given in the Appendix of this paper). We find that (holding all variables constant except the quoted one) bias increases with decreasing scale, with increasing galactic age or metallicity, and with increasing redshift of observations. At the 8 h~(-1) Mpc fiducial comoving scale, bias (for bright regions) is 1.35 at z = 0, reaching to 3.6 at z = 3, both numbers being consistent with extant observations. We also find that (10-20) h~(-1) Mpc voids in the distribution of luminous objects are as observed (i.e., observed voids are not an argument against cold dark matter [CDM]-like models), and finally that the younger systems should show a colder Hubble flow than do the early-type galaxies (a testable proposition). Surprisingly, little evolution is found in the amplitude of the smoothed galaxy-galaxy correlation function (as a function of comoving separation). Testing this prediction against observations will allow a comparison between this work and that of Kauffmann et al., which is based on a different physical modeling method.
机译:我们在标准物理过程的基础上,分析了流行的ACDM宇宙学模型的新的大规模(100 h〜(-1)Mpc)数值流体动力学模拟,包括在我们的处理过程中暗物质,气体和恒星形成。该方法以小于200 h〜(-1)kpc的数值分辨率应用(对于跟踪单个星系(尤其是在稠密区域中的星系而言,仍然是相当粗糙的)),尝试估算星系的形成位置和时间。然后,我们将平滑的星系分布与平滑的质量分布进行比较,以确定“偏差”,定义为bδ(δM/ M)_(gal)/(δM/ M)_(total),与代码数字分辨率(基于本文附录中给出的分辨率测试)。我们发现(使所有变量保持不变,除了引用的变量除外),偏差随着尺度的减小,银河年龄或金属性的增加以及观测值的红移的增加而增加。在8 h〜(-1)Mpc基准移动尺度下,偏差(对于明亮区域)在z = 0时为1.35,在z = 3时达到3.6,这两个数字与现有观察一致。我们还发现,发光物体分布中的(10-20)h〜(-1)Mpc空隙是观察到的(即观察到的空隙不是反对冷暗物质[CDM]类模型的论据),最后,较年轻的系统应显示出比早期类型的星系更冷的哈勃流(可证明的命题)。出人意料的是,在平滑的星系-星系相关函数(随同运动分离的函数)的振幅中几乎没有发现演化。将这些预测与观测值进行比较,将可以与基于不同物理建模方法的Kauffmann等人的工作进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号