...
首页> 外文期刊>Atmosphere-ocean >Modelling Sea Surface Temperature (SST) in the Hudson Bay Complex Using Bulk Heat Flux Parameterization: Sensitivity to Atmospheric Forcing, and Model Resolution
【24h】

Modelling Sea Surface Temperature (SST) in the Hudson Bay Complex Using Bulk Heat Flux Parameterization: Sensitivity to Atmospheric Forcing, and Model Resolution

机译:使用批量热通量参数化建模海面温度(SST)在哈德森湾复合体中:大气强制敏感性,以及模型分辨率

获取原文
获取原文并翻译 | 示例
           

摘要

Sea surface temperature (SST) from four Nucleus for European Modelling of the Ocean (NEMO) model simulations is analyzed to study the bulk flux parameterization to compute SST over the Hudson Bay Complex (HBC) for the summer months (August and September) from 2002 to 2009. The NEMO simulation was forced with two atmospheric forcing sets with different resolutions: the Coordinated Ocean-ice Reference Experiment, version 2 (COREv2), as the lower resolution and the Canadian Meteorological Centre's Global Deterministic Prediction System Reforecasts (CGRF) as the higher resolution. The CGRF forcing is also implemented in the third and fourth runs using different runoff data and different NEMO resolutions (1/12 degrees versus 1/4 degrees). Results show that all four modelled SSTs followed observed SST patterns, with regional differences in SST bias between simulations with different atmospheric forcing. The SST differences are small between simulations forced with the same atmospheric forcing but with different model resolution or runoff. This implies that the model resolution and runoff have a small effect on the simulated SST in the HBC. Moreover, to better capture the effect of near-surface temperature (T-air) on simulated SST, we conducted three analyses using the Haney flux linearization formula. Results from these assessments did not indicate any direct influence on the model-simulated SSTs by T-air. Looking at the heat flux as a signature for SST showed that both averaged spatial distribution and time series of net heat flux produced by the three CGRF forcing simulations were higher than the net heat flux generated by the CORE 2 simulation. This was generally true for all four components of the total heat flux (sensible, latent, shortwave, and longwave) individually as well. Total heat flux in summer is governed by the shortwave heat flux, with values up to 120 W m(-2) in August, and the longwave heat flux is the main contributor to the total heat flux differences. These heat flux differences lead to corresponding colder model SSTs for the CGRF runs and warmer SSTs for the CORE 2 simulations.
机译:分析了来自四个欧洲建模的核心(NEMO)模型模拟​​的海面温度(SST),研究了2002年夏季(八月和九月)对哈德森湾复合体(HBC)的批量助焊剂参数化。到2009年。迫使NEMO模拟用不同的分辨率进行两种大气强制设定:协调的海洋冰参考实验,版本2(COREv2),作为下层分辨率和加拿大气象中心的全局确定性预测系统重新折叠(CGRF)更高的分辨率。 CGRF强制也在第三和第四次运行中使用不同的径流数据和不同的NEMO分辨率(1/12度与1/4度)来实现。结果表明,所有四种建模的SST都观察到的SST模式,具有不同大气强制模拟之间的SST偏差的区域差异。 SST差异较小,模拟迫使具有相同的大气压,但具有不同的模型分辨率或径流。这意味着模型分辨率和径流对HBC中的模拟SST具有很小的影响。此外,为了更好地捕获近表面温度(T空气)对模拟SST的影响,我们使用Haney通量线性化公式进行了三次分析。这些评估的结果并未表明T空气对模型模拟SST的任何直接影响。作为SST的签名看热通量表明,由三个CGRF强制模拟产生的平均空间分布和时间序列的净热量序列均高于核心2模拟产生的净热量通量。对于全部热通量(明智,潜伏,短波和长波)的所有四个组分也是如此。夏季总热量通量受短波热通量的管辖,8月份的值高达120 W m(-2),龙波热通量是总热通量差异的主要贡献者。这些热通量差异导致对应的CGRF运行和核心2模拟的温暖SST的相应较冷的模型SST。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号