首页> 外文期刊>Behavioral and Brain Sciences >Brain mechanisms of acoustic communication in humans and nonhuman primates: An evolutionary perspective
【24h】

Brain mechanisms of acoustic communication in humans and nonhuman primates: An evolutionary perspective

机译:人类和非人类灵长类动物的声音交流的大脑机制:进化的观点

获取原文
获取原文并翻译 | 示例
           

摘要

Any account of "what is special about the human brain" (Passingham 2008) must specify the neural basis of our unique ability to produce speech and delineate how these remarkable motor capabilities could have emerged in our hominin ancestors. Clinical data suggest that the basal ganglia provide a platform for the integration of primate-general mechanisms of acoustic communication with the faculty of articulate speech in humans. Furthermore, neurobiological and paleoanthropological data point at a two-stage model of the phylogenetic evolution of this crucial prerequisite of spoken language: (ⅰ) monosynaptic refinement of the projections of motor cortex to the brainstem nuclei that steer laryngeal muscles, presumably, as part of a "phylogenetic trend" associated with increasing brain size during hominin evolution; (ⅱ) subsequent vocal-laryngeal elaboration of cortico-basal ganglia circuitries, driven by human-specific FOXP2 mutations. This concept implies vocal continuity of spoken language evolution at the motor level, elucidating the deep entrenchment of articulate speech into a "nonverbal matrix" (Ingold 1994), which is not accounted for by gestural-origin theories. Moreover, it provides a solution to the question for the adaptive value of the "first word" (Bickerton 2009) since even the earliest and most simple verbal utterances must have increased the versatility of vocal displays afforded by the preceding elaboration of monosynaptic corticobulbar tracts, giving rise to enhanced social cooperation and prestige. At the ontogenetic level, the proposed model assumes age-dependent interactions between the basal ganglia and their cortical targets, similar to vocal learning in some songbirds. In this view, the emergence of articulate speech builds on the "renaissance" of an ancient organizational principle and, hence, may represent an example of "evolutionary tinkering" (Jacob 1977).
机译:关于“人脑的特殊之处”的任何论述(Passingham 2008)都必须说明我们产生言语的独特能力的神经基础,并描述这些杰出的运动能力如何在我们的人类祖先中出现。临床数据表明,基底神经节提供了一个平台,使灵长类动物的一般性听觉沟通机制与人的发音能力得以整合。此外,神经生物学和古人类学数据指向口语这一重要先决条件的系统发育进化的两阶段模型:(ⅰ)单突触精化运动皮层投射到脑干核的投射,推测是引导喉部肌肉的一部分。人源素进化过程中与大脑大小增加有关的“系统发育趋势”; (ⅱ)由人特异性FOXP2突变驱动的随后的皮质基底神经节回路的声带加工。这个概念暗示了口头语言在运动水平上的发声连续性,阐明了清晰表达的语音进入“非语言矩阵”(Ingold 1994)的深层根深蒂固,这是手势起源理论无法解释的。此外,它为“第一个单词”的自适应值问题提供了一种解决方案(Bickerton,2009年),因为即使是最早,最简单的语言表达,也必须提高了先前通过制作单突触皮层皮质小道而提供的声音显示的通用性,增强了社会合作和声望。在个体发育水平上,该模型假设基底神经节与其皮质靶标之间存在年龄相关的相互作用,这与某些鸣禽中的声音学习相似。按照这种观点,语音表达的出现是建立在古老的组织原则的“复兴”基础上的,因此可以代表“进化修补”的一个例子(Jacob 1977)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号