...
首页> 外文期刊>Biochemistry >Wiring Photosystem I for Direct Solar Hydrogen Production
【24h】

Wiring Photosystem I for Direct Solar Hydrogen Production

机译:接线光系统I以直接生产太阳能

获取原文
获取原文并翻译 | 示例
           

摘要

The generation of H2 by the use of solar energy is a promising way to supply humankind’s energynneeds while simultaneouslymitigating environmental concerns that arise due to climate change. The challengenis to find a way to connect a photochemical module that harnesses the sun’s energy to a catalytic module thatngenerates H2 with high quantum yields and rates. In this review, we describe a technology that employs an“molecular wire” to connect a terminal [4Fe-4S] cluster of Photosystem I directly to a catalyst, which can beneither a Pt nanoparticle or the distal [4Fe-4S] cluster of an [FeFe]- or [NiFe]-hydrogenase enzyme. The keys tonconnecting these two moieties are surface-located cysteine residues, which serve as ligands to Fe-S clustersnand which can be changed through site-specific mutagenesis to glycine residues, and the use of a molecularnwire terminated in sulfhydryl groups to connect the two modules. The sulfhydryl groups at the end of thenmolecular wire forma direct chemical linkage to a suitable catalyst or can chemically rescue a [4Fe-4S] cluster,nthereby generating a strong coordination bond. Specifically, the molecular wire can connect the FBniron-sulfur cluster of Photosystem I either to a Pt nanoparticle or, by using the same type of geneticnmodification, to the differentiated iron atom of the distal [4Fe-4S]n3n(Cys)3(Gly) cluster of hydrogenase.Whennelectrons are supplied by a sacrificial donor, this technology forms the cathode of a photochemical half-cellnthat evolves H2 when illuminated. If such a device were connected to the anode of a photochemical half-cellnthat oxidizes water, an in vitro solar energy converter could be realized that generates only O2 and H2 in thenlight. A similar methodology can be used to connect Photosystem I to other redox proteins that have surface-nlocated [4Fe-4S] clusters. The controlled light-driven production of strong reductants by such systems can benused to produce other biofuels or to provide mechanistic insights into enzymes catalyzing multielectron,nproton-coupled reactions.
机译:利用太阳能产生氢是一种有前途的方式,可以满足人类的能源需求,同时可以缓解由于气候变化而引起的环境问题。寻找一种方法,将利用太阳能量的光化学模块连接到催化模块上,该模块以高量子产率和高速率使H2增能,这是一个挑战。在这篇综述中,我们描述了一种利用“分子线”将光系统I的末端[4Fe-4S]簇直接连接至催化剂的技术,该催化剂既可以是Pt纳米粒子也可以不是其末端的[4Fe-4S]簇。 [FeFe]-或[NiFe]-氢化酶。连接这两个部分的关键是位于表面的半胱氨酸残基,它们是Fe-S团簇的配体,可通过定点诱变而变为甘氨酸残基,并使用以巯基封端的分子线连接两个模块。分子线末端的巯基直接化学键合到合适的催化剂上,或者可以化学拯救[4Fe-4S]簇,从而产生强配位键。具体来说,分子线可以将光系统I的FBniron-硫簇连接到Pt纳米颗粒,或者通过使用相同类型的基因修饰,连接到远端[4Fe-4S] n3n(Cys)3(Gly)的分化铁原子当牺牲供体提供电子时,该技术形成光化学半电池的阴极,该半化学电池在被照射时会释放出H2。如果将此类设备连接到将水氧化的光化学半电池的阳极,则可以实现体外太阳能转换器,该转换器仅在光下生成O2和H2。可以使用类似的方法将光系统I与具有表面定位的[4Fe-4S]簇的其他氧化还原蛋白连接。可以通过这种系统控制光驱动的强还原剂生产,以生产其他生物燃料,或提供对催化多电子,质子耦合反应的酶的机理认识。

著录项

  • 来源
    《Biochemistry》 |2010年第3期|p.404-414|共11页
  • 作者单位

    ‡Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 and§Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号