首页> 外文期刊>Biochemistry >Dynamic Origins of Differential RNA Binding Function in Two dsRBDs from the miRNA “Microprocessor” Complex
【24h】

Dynamic Origins of Differential RNA Binding Function in Two dsRBDs from the miRNA “Microprocessor” Complex

机译:来自miRNA“微处理器”复合体的两个dsRBD中差异性RNA结合功能的动态起源

获取原文
获取原文并翻译 | 示例
           

摘要

MicroRNAs (miRNAs) affect gene regulation by base pairing with mRNA and contribute to thencontrol of cellular homeostasis. The first step in miRNA maturation is conducted in the nucleus by then“microprocessor” complex made up of an RNase III enzyme, Drosha, that contains one dsRNA bindingndomain (dsRBD), andDGCR8, that contains two dsRBDs in tandem. The crystal structure of DGCR8-Coren(493-720), containing both dsRBDs, and the NMR solution structure of Drosha-dsRBD (1259-1337) havenbeen reported, but the solution dynamics have not been explored for any of these dsRBDs. To better define thenmechanism of dsRNA binding and thus the nuclear maturation step of miRNA processing, we report NMRnspin relaxation andMD simulations of Drosha-dsRBD (1259-1337) and DGCR8-dsRBD1 (505-583). Thenstudy wasmotivated by electrophoreticmobility shift assays (EMSAs) of the two dsRBDs, which showed thatnDrosha-dsRBDdoes not bind a representativemiRNA but isolatedDGCR8-dsRBD1 does (Kd=9.4(0.4 μM).nOur results show that loop 2 in both dsRBDs is highly dynamic but the pattern of the correlations observed innMDis different for the two proteins.Additionally, the extended loop 1 ofDrosha-dsRBDismore flexible thannthe corresponding loop inDGCR8-dsRBD1 but shows no correlation with loop 2, which potentially explainsnthe lack of dsRNA binding byDrosha-dsRBDin the absence of the RNase III domains. The results presentednin this study provide key structural and dynamic features of dsRBDs that contribute to the bindingnmechanism of these domains to dsRNA.
机译:微小RNA(miRNA)通过与mRNA碱基配对影响基因调控,并有助于控制细胞内稳态。 miRNA成熟的第一步是在细胞核中进行,然后由“微处理器”复合物组成,该复合物由RNase III酶Drosha和DGCR8组成,其中RNase III酶包含一个dsRNA结合域(dsRBD)和DGCR8,后者包含两个dsRBD。既包含dsRBD的DGCR8-Coren(493-720)的晶体结构,也包含Drosha-dsRBD(1259-1337)的NMR溶液结构的报道,但是对于这些dsRBD中的任何一个,都没有探索溶液动力学。为了更好地定义dsRNA结合的机制,从而确定miRNA加工的核成熟步骤,我们报道了Drosha-dsRBD(1259-1337)和DGCR8-dsRBD1(505-583)的NMRnspin弛豫和MD模拟。然后通过两个dsRBD的电泳迁移率分析(EMSA)进行了研究,结果表明nDrosha-dsRBD不结合代表性的miRNA,但分离的DGCR8-dsRBD1可以结合(Kd = 9.4(0.4μM).n我们的结果表明,两个dsRBD中的loop 2都是高度动态的,但是此外,Drosha-dsRB的延伸环1比DGCR8-dsRBD1中的相应环更具柔性,但与环2没有相关性,这可能解释了在没有Drosha-dsRBD的情况下,Drosha-dsRBD缺乏dsRNA结合。这项研究中提供的结果提供了dsRBD的关键结构和动态特征,这些特征有助于这些结构域与dsRNA的结合机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号