...
首页> 外文期刊>Biochemistry >Mutational Analysis of Mycobacterium UvrD1 Identifies Functional Groups Required for ATP Hydrolysis, DNA Unwinding, and Chemomechanical Coupling
【24h】

Mutational Analysis of Mycobacterium UvrD1 Identifies Functional Groups Required for ATP Hydrolysis, DNA Unwinding, and Chemomechanical Coupling

机译:分枝杆菌UvrD1的突变分析确定了ATP水解,DNA展开和化学机械偶联所需的官能团

获取原文
获取原文并翻译 | 示例
           

摘要

Mycobacterial UvrD1 is a DNA-dependent ATPase and a Ku-dependent 3′ to 5′ DNA helicase. The UvrD1 motor domain resembles that of the prototypal superfamily I helicases UvrD and PcrA. Here we performed a mutational analysis of UvrD1 guided by the crystal structure of a DNA-bound Escherichia coli UvrD−ADP−MgF3 transition state mimetic. Alanine scanning and conservative substitutions identified amino acids essential for both ATP hydrolysis and duplex unwinding, including those implicated in phosphohydrolase chemistry via transition state stabilization (Arg308, Arg648, Gln275), divalent cation coordination (Glu236), or activation of the nucleophilic water (Glu236, Gln275). Other residues important for ATPase/helicase activity include Phe280 and Phe72, which interact with the DNA 3′ single strand tail. ATP hydrolysis was uncoupled from duplex unwinding by mutations at Glu609 (in helicase motif V), which contacts the ATP ribose sugar. Introducing alanine in lieu of the adenine-binding “Q motif” glutamine (Gln24) relaxed the substrate specificity in NTP hydrolysis, e.g., eliciting a gain of function as a UTPase/TTPase, although the Q24A mutant still relied on ATP/dATP for duplex unwinding. Our studies highlight the role of the Q motif as a substrate filter and the contributions of adenosine-binding residues as couplers of NTP hydrolysis to motor activity. The Ku-binding function of UvrD1 lies within its C-terminal 270 amino acid segment. Here we found that deleting the 90 amino acid C-terminal domain, which is structurally uncharacterized, diminished DNA unwinding, without affecting ATP hydrolysis or binding to the DNA helicase substrate, apparently by affecting the strength of the UvrD1−Ku interaction.
机译:分枝杆菌UvrD1是DNA依赖性ATP酶和Ku依赖性3'至5'DNA解旋酶。 UvrD1运动域类似于原型超家族I解旋酶UvrD和PcrA的域。在这里,我们对结合DNA的大肠杆菌UvrD-ADP-MgF3过渡态模拟物的晶体结构进行了UvrD1的突变分析。丙氨酸扫描和保守取代确定了ATP水解和双链解链均必不可少的氨基酸,包括通过过渡态稳定化(Arg308,Arg648,Gln275),二价阳离子配位(Glu236)或亲核水的活化(Glu236)与磷酸水解酶化学有关的氨基酸。 ,Gln275)。对于ATPase /解旋酶活性重要的其他残基包括与DNA 3'单链尾部相互作用的Phe280和Phe72。通过接触ATP核糖的Glu609(解旋酶基序V)中的突变,ATP水解与双链体解旋解偶联。引入丙氨酸代替结合有腺嘌呤的“ Q基序”谷氨酰胺(Gln24)可以放松NTP水解中的底物特异性,例如,引发获得作为UTPase / TTPase的功能,尽管Q24A突变体仍依赖于ATP / dATP进行双链放松。我们的研究强调了Q基序作为底物过滤器的作用,以及腺苷结合残基作为NTP水解对运动活性的成色剂的作用。 UvrD1的Ku结合功能位于其C端270个氨基酸区段内。在这里,我们发现删除90个氨基酸的C末端结构域(结构上未表征)可减少DNA展开,而不会影响ATP水解或与DNA解旋酶底物的结合,这显然是通过影响UvrD1-Ku相互作用的强度来实现的。

著录项

  • 来源
    《Biochemistry》 |2009年第19期|p.4019-4030|共12页
  • 作者单位

    ‡ Molecular Biology Program, Sloan-Kettering Institute§ Immunology Program, Sloan-Kettering Institute Division of Infectious Diseases, Memorial-Sloan Kettering Cancer Center, New York, New York 10021;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号