首页> 外文期刊>Bioprocess and Biosystems Engineering >Process optimization involving critical evaluation of oxygen transfer, oxygen uptake and nitrogen limitation for enhanced biomass and lipid production by oleaginous yeast for biofuel application
【24h】

Process optimization involving critical evaluation of oxygen transfer, oxygen uptake and nitrogen limitation for enhanced biomass and lipid production by oleaginous yeast for biofuel application

机译:工艺优化涉及对氧气转移,氧气吸收和氮限制的严格评估,以提高含油酵母在生物燃料应用中的生物量和脂质产量

获取原文
获取原文并翻译 | 示例
           

摘要

Lipid accumulation in oleaginous yeast is generally induced by nitrogen starvation, while oxygen saturation can influence biomass growth. Systematic shake flask studies that help in identifying the right nitrogen source and relate its uptake kinetics to lipid biosynthesis under varying oxygen saturation conditions are very essential for addressing the bioprocessing-related issues, which are envisaged to occur in the fermenter scale production. In the present study, lipid bioaccumulation by P. guilliermondii at varying C:N ratios and oxygen transfer conditions (assessed in terms of k (L) a) was investigated in shake flasks using a pre-optimized N-source and a two-stage inoculum formulated in a hybrid medium. A maximum lipid concentration of 10.8 +/- 0.5 g L-1 was obtained in shake flask study at the optimal condition with an initial C:N and k (L) a of 60:1 and 0.6 min(-1), respectively, at a biomass specific growth rate of 0.11 h(-1). Translating these optimal shake flask conditions to a 3.7 L stirred tank reactor resulted in biomass and lipid concentrations of 16.74 +/- 0.8 and 8 +/- 0.4 g L-1. The fatty acid methyl ester (FAME) profile of lipids obtained by gas chromatography was found to be suitable for biodiesel application. We strongly believe that the rationalistic approach-based design of experiments adopted in the study would help in achieving high cell density with improved lipid accumulation and also minimize the efforts towards process optimization during bioreactor level operations, consequently reducing the research and development-associated costs.
机译:含油酵母中的脂质积累通常是由氮饥饿引起的,而氧饱和度会影响生物量的生长。系统摇瓶研究有助于确定正确的氮源,并将其吸收动力学与不同的氧饱和度条件下的脂质生物合成相关,对于解决与生物加工相关的问题非常重要,因为这些问题预计会在发酵罐规模生产中发生。在本研究中,在摇瓶中使用预先优化的氮源和两步法研究了在不同的C:N比和氧气转移条件(以k(L)a评估)下,古氏疟原虫的脂质生物蓄积性在混合培养基中配制的接种物。在最佳条件下摇瓶研究中获得的最大脂质浓度为10.8 +/- 0.5 g L-1,初始C:N和k(L)a分别为60:1和0.6 min(-1),生物量比生长速率为0.11 h(-1)。将这些最佳摇瓶条件转化为3.7 L的搅拌釜反应器后,生物质和脂质的浓度分别为16.74 +/- 0.8和8 +/- 0.4 g L-1。发现通过气相色谱法获得的脂质的脂肪酸甲酯(FAME)谱适用于生物柴油应用。我们坚信,研究中采用的基于理性方法的实验设计将有助于实现高细胞密度并改善脂质积累,并最大程度地减少生物反应器级操作过程中工艺优化的工作量,从而降低与研发相关的成本。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号