首页> 外文期刊>Bioprocess and Biosystems Engineering >Metabolic analyses of the improved ε-poly-L-lysine productivity using a glucose-glycerol mixed carbon source in chemostat cultures
【24h】

Metabolic analyses of the improved ε-poly-L-lysine productivity using a glucose-glycerol mixed carbon source in chemostat cultures

机译:在化粪池培养物中使用葡萄糖-甘油混合碳源对ε-聚-L-赖氨酸生产率提高的代谢分析

获取原文
获取原文并翻译 | 示例
           

摘要

The glucose-glycerol mixed carbon source remarkably reduced the batch fermentation time of epsilon-poly-l-lysine (epsilon-PL) production, leading to higher productivity of both biomass and epsilon-PL, which was of great significance in industrial microbial fermentation. Our previous study confirmed the positive influence of fast cell growth on the epsilon-PL biosynthesis, while the direct influence of mixed carbon source on epsilon-PL production was still unknown. In this work, chemostat culture was employed to study the capacity of epsilon-PL biosynthesis in different carbon sources at a same dilution rate of 0.05 h(-1). The results indicated that the mixed carbon source could enhance the epsilon-PL productivity besides the rapid cell growth. Analysis of key enzymes demonstrated that the activities of phosphoenolpyruvate carboxylase, citrate synthase, aspartokinase and epsilon-PL synthetase were all increased in chemostat culture with the mixed carbon source. In addition, the carbon fluxes were also improved in the mixed carbon source in terms of tricarboxylic acid cycle, anaplerotic and diaminopimelate pathway. Moreover, the mixed carbon source also accelerated the energy metabolism, leading to higher levels of energy charge and NADH/NAD(+) ratio. The overall improvements of primary metabolism in chemostat culture with glucose-glycerol combination provided sufficient carbon skeletons and ATP for epsilon-PL biosynthesis. Therefore, the significantly higher epsilon-PL productivity in the mixed carbon source was a combined effect of both superior substrate group and rapid cell growth.
机译:葡萄糖-甘油混合碳源显着减少了ε-聚-1-赖氨酸(epsilon-PL)生产的分批发酵时间,从而提高了生物质和epsilon-PL的生产率,这在工业微生物发酵中具有重要意义。我们先前的研究证实了快速细胞生长对epsilon-PL生物合成的积极影响,而混合碳源对epsilon-PL生产的直接影响仍然未知。在这项工作中,使用恒化器培养来研究在相同的0.05 h(-1)稀释速率下不同碳源中epsilon-PL生物合成的能力。结果表明,混合碳源除了可以使细胞快速生长外,还可以提高ε-PL的生产率。对关键酶的分析表明,在混合碳源的恒化培养中,磷酸烯醇丙酮酸羧化酶,柠檬酸合酶,天冬氨酸激酶和ε-PL合成酶的活性均增加。此外,混合碳源的碳通量在三羧酸循环,抗衰老和二氨基庚二酸酯途径方面也得到了改善。此外,混合碳源还加速了能量代谢,导致更高水平的能量电荷和NADH / NAD(+)比。葡萄糖-甘油组合在恒化器培养中初级代谢的总体改善为ε-PL生物合成提供了足够的碳骨架和ATP。因此,混合碳源中显着更高的ε-PL生产率是优异的底物组和细胞快速生长的综合作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号