...
首页> 外文期刊>Bioprocess and Biosystems Engineering >Metabolic engineering of Corynebacterium glutamicum to produce GDP-L-fucose from glucose and mannose
【24h】

Metabolic engineering of Corynebacterium glutamicum to produce GDP-L-fucose from glucose and mannose

机译:谷氨酸棒杆菌的代谢工程从葡萄糖和甘露糖生产GDP-L-岩藻糖

获取原文
获取原文并翻译 | 示例
           

摘要

Wild-type Corynebacterium glutamicum was metabolically engineered to convert glucose and mannose into guanosine 5'-diphosphate (GDP)-L-fucose, a precursor of fucosyl-oligosaccharides, which are involved in various biological and pathological functions. This was done by introducing the gmd and wcaG genes of Escherichia coli encoding GDP-D-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase, respectively, which are known as key enzymes in the production of GDP-L-fucose from GDP-D-mannose. Coexpression of the genes allowed the recombinant C. glutamicum cells to produce GDP-L-fucose in a minimal medium containing glucose and mannose as carbon sources. The specific product formation rate was much higher during growth on mannose than on glucose. In addition, the specific product formation rate was further increased by coexpressing the endogenous phosphomanno-mutase gene (manB) and GTP-mannose-1-phosphate guanylyl-transferase gene (manC), which are involved in the conversion of mannose-6-phos-phate into GDP-D-mannose. However, the overexpression of manA encoding mannose-6-phosphate isomerase, catalyzing interconversion of mannose-6-phosphate and fructoses-phosphate showed a negative effect on formation of the target product. Overall, coexpression of gmd, wcaG, manB and manC in C. glutamicum enabled production of GDP-L-fucose at the specific rate of 0.11 mg g cell~(-1) h~(-1) The specific GDP-L-fucose content reached 5.5 mg g cell~(-1), which is a 2.4-fold higher than that of the recombinant E. coli overexpressing gmd, wcaG, manB and manC under comparable conditions. Well-established metabolic engineering tools may permit optimization of the carbon and cofactor metabolisms of C. glutamicum to further improve their production capacity.
机译:野生型谷氨酸棒杆菌经代谢工程改造,可将葡萄糖和甘露糖转化为鸟苷5'-二磷酸(GDP)-L-岩藻糖,岩藻糖基寡糖的前体,参与多种生物学和病理功能。这是通过引入大肠杆菌的gmd和wcaG基因来实现的,该基因编码GDP-D-甘露糖-4,6-脱水酶和GDP-4-酮-6-脱氧-D-甘露糖-3,5-表异构酶-4-还原酶,分别是从GDP-D-甘露糖生产GDP-L-岩藻糖的关键酶。基因的共表达使重组谷氨酸棒状杆菌细胞在含有葡萄糖和甘露糖作为碳源的基本培养基中产生GDP-L-岩藻糖。在甘露糖上生长期间,比葡萄糖上的特定产物形成速率高得多。此外,通过共表达参与甘露糖6-磷酸转化的内源性磷酸甘露糖突变酶基因(manB)和GTP-甘露糖-1-磷酸鸟苷基转移酶基因(manC),进一步提高了特定产物的形成速率。磷酸盐转化为GDP-D-甘露糖。然而,编码甘露糖6-磷酸异构酶的manA的过表达,催化甘露糖6-磷酸和果糖磷酸酯的相互转化对目标产物的形成显示负面影响。总的来说,谷氨酸棒杆菌中gmd,wcaG,manB和manC的共表达使得能够以0.11 mg g细胞〜(-1)h〜(-1)的特定速率产生GDP-L-岩藻糖。其含量达到5.5 mg g cell〜(-1),比在相同条件下过表达gmd,wcaG,manB和manC的重组大肠杆菌高2.4倍。完善的代谢工程工具可以优化谷氨酸棒杆菌的碳和辅助因子代谢,从而进一步提高其生产能力。

著录项

  • 来源
    《Bioprocess and Biosystems Engineering》 |2013年第6期|749-756|共8页
  • 作者单位

    Department of Agricultural Biotechnology,Center for Food and Bioconvergence, Seoul National University,Seoul 151-921, Republic of Korea;

    Department of Food Science and Engineering,Ewha Womans University, Seoul 120-750,Republic of Korea;

    Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136-702,Republic of Korea;

    School of Life Science and Biotechnology,Korea University, Seoul 136-713. Republic of Korea;

    Department of Agricultural Biotechnology,Center for Food and Bioconvergence, Seoul National University,Seoul 151-921, Republic of Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    GDP-L-fucose; GDP-D-mannose; Corynebacterium glutamicum; Guanosine nucleotide;

    机译:GDP-L-岩藻糖;GDP-D-甘露糖;谷氨酸棒杆菌;鸟苷核苷酸;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号