...
首页> 外文期刊>Building and Environment >Predicting the evolution of secondary organic aerosol (SOA) size distributions due to limonene ozonolysis in indoor environments
【24h】

Predicting the evolution of secondary organic aerosol (SOA) size distributions due to limonene ozonolysis in indoor environments

机译:预测由于柠檬烯在室内环境中进行臭氧分解而产生的次级有机气溶胶(SOA)尺寸分布的演变

获取原文
获取原文并翻译 | 示例
           

摘要

Aerosol diameter is important in determining its fate and transport. Indoors, the ozonolysis of terpenoids, such as limonene, yields secondary organic aerosol (SOA), which can range orders of magnitude in size. The generated SOA size distributions are affected by various processes, including nucleation, partitioning, coagulation, surface deposition, and air exchange; of these processes, only air exchange is not size resolved. Herein, a model was developed to predict the transient evolution of the SOA size distribution indoors due to limonene ozonolysis. The model simulates partitioning without requiring explicit knowledge of the chemical mechanism, because it instead combines the theory of the aerosol mass fraction (AMF = mass SOA formed mass terpenoid reacted) with Fick's first law to predict the change in aerosol volume from SOA formation. We used experimental results for limonene ozonolysis from our previous work to evaluate and tune the model, and the model performed well according to standard indoor air quality model assessment methods. Its framework can be extended to other terpenoids, and its current form can be used to predict the implications of size resolved SOA formation due to ozonolysis of limonene, the most common indoor terpenoid. Further, a sensitivity analysis showed that air exchange could be one of the most influential mechanisms to control SOA indoors. (C) 2016 Elsevier Ltd. All rights reserved.
机译:气溶胶直径在确定其命运和运输中很重要。在室内,诸如柠檬烯的萜类化合物的臭氧分解产生次级有机气溶胶(SOA),其大小范围可能在几个数量级之间。生成的SOA大小分布受各种过程的影响,包括成核,分配,凝聚,表面沉积和空气交换。在这些过程中,只有空气交换无法解决尺寸问题。本文中,开发了一种模型来预测由于柠檬烯臭氧分解而导致的室内SOA尺寸分布的瞬态演变。该模型无需直接了解化学机理即可模拟分配,因为该模型将气溶胶质量分数理论(AMF = SOA形成的质量萜类物质反应的质量)与菲克第一定律结合在一起,从而预测了SOA形成引起的气溶胶体积变化。我们使用以前工作中柠檬烯臭氧分解的实验结果来评估和调整该模型,并且该模型根据标准室内空气质量模型评估方法表现良好。它的框架可以扩展到其他萜类化合物,并且它的当前形式可以用来预测由于柠檬烯(最常见的室内萜类化合物)的臭氧分解而导致尺寸分解的SOA形成的含义。此外,敏感性分析表明,空气交换可能是控制室内SOA的最有影响的机制之一。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号