...
首页> 外文期刊>Building and Environment >CFD simulation of wind-driven upward cross ventilation and its enhancement in long buildings: Impact of single-span versus double-span leeward sawtooth roof and opening ratio
【24h】

CFD simulation of wind-driven upward cross ventilation and its enhancement in long buildings: Impact of single-span versus double-span leeward sawtooth roof and opening ratio

机译:风动向上交叉通风的CFD模拟及其在长建筑物中的增强:单跨与双跨背风锯齿屋顶和开口率的影响

获取原文
获取原文并翻译 | 示例
           

摘要

A leeward sawtooth roof building has an inlet opening in the lower level of the windward facade and an upper-level outlet opening near the roof top, in the leeward facade. Leeward sawtooth roof buildings can be applied to efficiently ventilate low-rise buildings. Previous studies of the authors showed that the ventilation potential strongly depends on the roof inclination angle and roof geometry. The current study focuses on the ventilation flow in single-zone elongated low-rise buildings with a single-span versus double-span leeward sawtooth roof and different opening ratios. Straight, concave and convex roof geometries are evaluated. The analysis is performed using 3D steady Reynolds-averaged Navier-Stokes Computational Fluid Dynamics (CFD) simulations with the SST k-omega turbulence model. The computational grid is based on a grid-sensitivity analysis and the simulation results are validated based on Particle Image Velocimetry (PIV) measurements from literature. For the single-span cases, the convex roof results in the highest volume flow rate, which is about 8.8% higher than for the concave roof, and 3.5% higher than the straight roof. A double-span roof performs slightly better than a single-span roof with respect to ventilation flow rates (below 4.2%) in case of a straight or concave roof, but worse in case of a convex roof (-12%). The internal roof geometry near the outlet opening plays an important role in the ventilation of the building. Finally, the inlet-to-outlet opening ratio has an important effect on the volume flow rates, with significantly higher ventilation flow rates for a lower opening ratio. (C) 2015 Elsevier Ltd. All rights reserved.
机译:下风锯齿形屋顶建筑在迎风立面的下层有一个入口,在下风立面中的屋顶附近有一个上层的出口。背风锯齿形屋顶建筑可用于高效通风低层建筑。作者先前的研究表明,通风潜力在很大程度上取决于屋顶的倾斜角度和屋顶的几何形状。当前的研究集中在具有单跨与双跨背风锯齿屋顶和不同开口率的单区域加长低层建筑的通风流中。评估了直形,凹形和凸形屋顶的几何形状。使用具有SSTk-ω湍流模型的3D稳态雷诺平均Navier-Stokes计算流体动力学(CFD)模拟进行分析。计算网格基于网格灵敏度分析,并且基于文献中的粒子图像测速(PIV)测量结果对仿真结果进行了验证。对于单跨度情况,凸屋顶导致最高的体积流率,比凹屋顶高约8.8%,比直屋顶高3.5%。对于直屋顶或凹屋顶,双跨屋顶的通风量略低于单跨屋顶(4.2%以下),而对于凸屋顶则更差(-12%)。出口附近的内部屋顶几何形状在建筑物的通风中起着重要作用。最后,进风口与出风口的通气比对体积流量有重要影响,通气流量明显降低而通气率较低。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号