...
首页> 外文期刊>Chemosphere >Edta-assisted Pb Phytoextraction
【24h】

Edta-assisted Pb Phytoextraction

机译:EDTA辅助的Pb植物提取

获取原文
获取原文并翻译 | 示例
           

摘要

Pb is one of the most widespread and metal pollutants in soil. It is generally concentrated in surface layers with only a minor portion of the total metal found in soil solution. Phytoextraction has been proposed as an inexpensive, sustainable, in situ plant-based technology that makes use of natural hyperaccumula-tors as well as high biomass producing crops to help rehabilitate soils contaminated with heavy metals without destructive effects on soil properties. The success of phytoextraction is determined by the amount of biomass, concentration of heavy metals in plant, and bioavailable fraction of heavy metals in the rooting medium. In general, metal hyperaccumulators are low biomass, slow growing plant species that are highly metal specific. For some metals such as Pb, there are no hyperaccumulator plant species known to date. Although high biomass-yielding non-hyperaccumulator plants lack an inherent ability to accumulate unusual concentrations of Pb, soil application of chelating agents such as EDTA has been proposed to enhance the metal concentration in above-ground harvestable plant parts through enhancing the metal solubility and translocation from roots to shoots. Leaching of metals due to enhanced mobility during EDTA-assisted phytoextraction has been demonstrated as one of the potential hazards associated with this technology. Due to environmental persistence of EDTA in combination with its strong chelating abilities, the scientific community is moving away from the use of EDTA in phytoextraction and is turning to less aggressive alternative strategies such as the use of organic acids or more degradable APCAs (ami-nopolycarboxylic acids). We have therefore arrived at a point in phytoremediation research history in which we need to distance ourselves from EDTA as a proposed soil amendment within the context of phytoextraction. However, valuable lessons are to be learned from over a decade of EDTA-assisted phytoremediation research when considering the implementation of more degradable alternatives in assisted phytoextraction practices.
机译:铅是土壤中最广泛的金属污染物之一。它通常集中在表层,而土壤溶液中只发现总金属的一小部分。植物提取已被提议为一种廉价的,可持续的,原位基于植物的技术,该技术利用天然的超富集剂以及高生物量的农作物来帮助修复被重金属污染的土壤,而不会对土壤特性造成破坏性影响。植物提取的成功与否取决于生物量,植物中重金属的浓度以及生根培养基中重金属的生物利用率。通常,金属超蓄积物是低生物量,生长缓慢的植物物种,具有很高的金属特异性。对于某些金属,例如Pb,迄今尚无高积累植物。尽管产生高生物量的非超蓄积植物缺乏固有的积累异常浓度的Pb的能力,但已提出在土壤中施用螯合剂(如EDTA)可通过提高金属的溶解度和转运来提高地上可收获植物部分中的金属浓度从根到芽。由于在EDTA辅助植物提取过程中流动性增强而导致的金属浸出已被证明是与该技术相关的潜在危害之一。由于EDTA在环境方面的持久性及其强大的螯合能力,科学界正在将EDTA应用于植物提取中,而转向了更具攻击性的替代策略,例如使用有机酸或可降解性更高的APCA(酰胺基聚羧酸酸)。因此,在植物修复研究的历史上,我们需要与EDTA保持距离,因为在植物提取的背景下,EDTA是一种拟议的土壤改良剂。但是,当考虑在辅助植物提取方法中实施可降解性更高的替代品时,将从EDTA辅助的植物修复研究中汲取宝贵的经验教训。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号