首页> 外文期刊>Chinese science bulletin >Polynomial rings over commutative linearly compact rings
【24h】

Polynomial rings over commutative linearly compact rings

机译:交换线性紧环上的多项式环

获取原文
获取原文并翻译 | 示例
           

摘要

A ring R denotes a commutative associative ring with identity and each Rmodule is unitary. For the concepts and symbols not defined here we refer to refs. We call R co-Noetheria (Vamos ring) in the case where each finitely cogenerated R-module is artinian (linearly compact). Muller Theorem states that R has a Morita duality if and only if R is both Vamos and linearly compact (see Theorems 4.3 and 4.5 in ref.). In ref., Anh proved that each linearly compact ring is Vamos, hence it has a Morita duality(see Theorem 6.8 in ref.). A presentation of linearly compact modules and Morita duality can be found in the author's recent book. In this note we prove that a linearly compact ring R is Noetherian if and only if its polynomial ring R[x] is co-Noetherian (Vamos). Then we use an example which gives negative answers to three questions of Faith.
机译:环R表示具有同一性的可交换缔合环,并且每个Rmodule是单一的。对于此处未定义的概念和符号,请参阅参考文献。在每个有限地共同生成的R-模块是artinian(线性紧致)的情况下,我们将其称为R co-Noetheria(Vamos环)。穆勒定理指出,当且仅当R既是Vamos又是线性紧实时,R才具有Morita对偶性(请参见参考中的定理4.3和4.5)。在参考文献中,Anh证明每个线性紧凑的环都是Vamos,因此它具有森田对偶性(请参阅参考文献中的定理6.8)。线性紧凑模块和森田对偶性的介绍可以在作者的最新著作中找到。在此注释中,我们证明,当且仅当线性多项式环R [x]为co-Noetherian(Vamos)时,它才是Noetherian。然后,我们使用一个示例,给出对三个信念问题的否定答案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号