...
首页> 外文期刊>Cold regions science and technology >Numerical study of long-term cooling effects of thermosyphons around tower footings in permafrost regions along the Qinghai-Tibet Power Transmission Line
【24h】

Numerical study of long-term cooling effects of thermosyphons around tower footings in permafrost regions along the Qinghai-Tibet Power Transmission Line

机译:青藏输电线路多年冻土区塔基周围热虹吸管长期冷却效果的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

Two-phase closed thermosyphons are extensively used for cooling foundation soils of tower footings in permafrost regions along the Qinghai-Tibet Power Transmission Line (QTPTL). In this paper, the working period of these thermosyphons is firstly determined by field observations. Then, a 3-D numerical heat transfer model is constructed to study the long-term cooling effects of thermosyphons and thermal performance of foundation soils. The numerically simulated results show a significant cooling of foundation soils near thermosyphons in cold season approximately from late October to early May, and a rapid shift of the thermosyphon cooling to the footing side due to greater thermal conductivity of the concrete footing. As a consequence, a colder bulb would develop under the footing, increasing the bearing capacity of foundation soils. In warm season from the mid-May to mid-October, the maximum thaw around the footing would be greater than that in the natural ground due to better heat transfer through the concrete footing. During a 50-year operational period, foundation soils under the footing would roughly go through about four thermal stages under a combined effect of the thermosyphon cooling and climate warming: a rapid cooling stage in the first to 5th year, a stable stage in the 6th-15th year, a rapid warming stage in the 16th-35th year and a slow warming stage after the 35th year. During the operational period, the maximum thaw around the footing would be less than the embedding depth of the footing (5.8 m), meeting the design criterion for thermal stability of foundation soils. (C) 2015 Elsevier B.V. All rights reserved.
机译:两相闭式热虹吸管广泛用于冷却青藏输电线路(QTPTL)多年冻土区塔基的基础土壤。本文首先通过现场观察确定了这些热虹吸管的工作周期。然后,建立了一个3-D数值传热模型,以研究热虹吸管的长期冷却效果和基础土壤的热性能。数值模拟结果表明,在大约10月下旬至5月初的寒冷季节,热虹吸管附近的基础土壤有了明显的冷却,并且由于混凝土基础的热导率更高,热虹吸管的冷却迅速移向了管脚一侧。结果,在立足点下方会形成较冷的球茎,从而增加了基础土壤的承载力。在5月中旬至10月中旬的温暖季节,由于更好地通过混凝土基础进行传热,因此基础基础上的最大解冻将大于自然基础上的最大解冻。在50年的运营期内,在热虹吸冷却和气候变暖的共同作用下,基础下的基础土壤大致经历了大约四个加热阶段:第一至第五年为快速冷却阶段,第六阶段为稳定阶段。 -15年,即16至35年的快速升温阶段,以及35年之后的缓慢升温阶段。在运行期间,围绕基础的最大解冻将小于基础的嵌入深度(5.8 m),满足基础土壤热稳定性的设计标准。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Cold regions science and technology》 |2016年第1期|237-249|共13页
  • 作者单位

    Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, State Key Lab Frozen Soils Engn, Lanzhou 730000, Peoples R China;

    Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, State Key Lab Frozen Soils Engn, Lanzhou 730000, Peoples R China;

    Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, State Key Lab Frozen Soils Engn, Lanzhou 730000, Peoples R China;

    Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, State Key Lab Frozen Soils Engn, Lanzhou 730000, Peoples R China;

    Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, State Key Lab Frozen Soils Engn, Lanzhou 730000, Peoples R China;

    Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, State Key Lab Frozen Soils Engn, Lanzhou 730000, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Tower footing; Thermosyphons; Foundation soils; Permafrost; Qinghai-Tibet Power Transmission Line;

    机译:塔基;热虹吸管;地基土;多年冻土;青藏输电线路;塔基;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号