...
首页> 外文期刊>Combustion and Flame >Influence of chemical kinetics on detonation initiating by temperature gradients in methane/air
【24h】

Influence of chemical kinetics on detonation initiating by temperature gradients in methane/air

机译:化学动力学对甲烷/空气中温度梯度引发爆炸的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Different simplified and detailed chemical models and their impact on simulations of combustion regimes initiating by the initial temperature gradient in methane/air mixtures are studied. The limits of the regimes of reaction wave propagation depend upon the spontaneous wave speed and the characteristic velocities of the problem. The present study mainly focus to identify conditions required for the development a detonation and to compare the difference between simplified chemical models and detailed chemistry. It is shown that a widely used simplified chemical schemes, such as one-step, two-step and other simplified models, do not reproduce correctly the ignition process in methane/air mixtures. The ignition delay times calculated using simplified models are in orders of magnitude shorter than the ignition delay times calculated using detailed chemical models and measured experimentally. This results in considerably different times when the exothermic reaction affects significantly the ignition, evolution, and coupling of the spontaneous reaction wave and pressure waves. We show that the temperature gradient capable to trigger detonation calculated using detailed chemical models is much shallower (the size of the hot spot is much larger) than that, predicted by simulations with simplified chemical models. These findings suggest that the scenario leading to the deflagration to detonation transition (DDT) may depend greatly on the chemical model used in simulations and that the Zel'dovich gradient mechanism is not necessary a universal mechanism triggering DDT. The obtained results indicate that the conclusions derived from the simulations of DDT with simplified chemical models should be viewed with great caution. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:研究了不同的简化和详细的化学模型及其对甲烷/空气混合物中初始温度梯度引发的燃烧状态模拟的影响。反应波传播方式的限制取决于自发波速和问题的特征速度。本研究主要着眼于确定发展爆炸所需的条件,并比较简化的化学模型和详细的化学模型之间的差异。结果表明,广泛使用的简化化学方案,例如一步,两步和其他简化模型,不能正确地再现甲烷/空气混合物中的着火过程。使用简化模型计算的点火延迟时间比使用详细化学模型计算并通过实验测量的点火延迟时间短几个数量级。当放热反应显着影响自发反应波和压力波的着火,逸出和耦合时,这会导致明显不同的时间。我们显示,使用简化的化学模型进行模拟所预测的结果,使用详细的化学模型计算得出的能够触发爆轰的温度梯度要浅得多(热点的大小要大得多)。这些发现表明,导致爆燃到爆轰过渡(DDT)的场景可能很大程度上取决于模拟中使用的化学模型,并且Zel'dovich梯度机制不一定是触发DDT的通用机制。所得结果表明,应谨慎考虑从简化的化学模型对滴滴涕进行模拟得出的结论。 (C)2018年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

  • 来源
    《Combustion and Flame》 |2018年第11期|400-415|共16页
  • 作者单位

    Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China;

    Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China;

    Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China|Taiyuan Univ Technol, Coll Min Engn, Taiyuan 030024, Shanxi, Peoples R China;

    Stockholm Univ, Nord Inst Theoret Phys NORDITA, Roslagstullsbacken 23, S-10691 Stockholm, Sweden;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Temperature gradient; Chemical models; Deflagration; Detonation; Explosions; Ignition;

    机译:温度梯度;化学模型;爆燃;爆轰;爆炸;着火;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号