...
首页> 外文期刊>Combustion and Flame >A physics-based approach to modeling real-fuel combustion chemistry - Ⅱ. Reaction kinetic models of jet and rocket fuels
【24h】

A physics-based approach to modeling real-fuel combustion chemistry - Ⅱ. Reaction kinetic models of jet and rocket fuels

机译:一种基于物理的真实燃料燃烧化学建模方法——Ⅱ。喷气和火箭燃料的反应动力学模型

获取原文
获取原文并翻译 | 示例
           

摘要

We propose and test an alternative approach to modeling high-temperature combustion chemistry of multicomponent real fuels. The hybrid chemistry (HyChem) approach decouples fuel pyrolysis from the oxidation of fuel pyrolysis products. The pyrolysis (or oxidative pyrolysis) process is modeled by seven lumped reaction steps in which the stoichiometric and reaction rate coefficients are derived from experiments. The oxidation process is described by detailed chemistry of foundational hydrocarbon fuels. We present results obtained for three conventional jet fuels and two rocket fuels as examples. Modeling results demonstrate that HyChem models are capable of predicting a wide range of combustion properties, including ignition delay times, laminar flame speeds, and non-premixed flame extinction strain rates of all five fuels. Sensitivity analysis shows that for conventional, petroleum-derived real fuels, the uncertainties in the experimental measurements of C2H4 and CH4 impact model predictions to an extent, but the largest influence of the model predictability stems from the uncertainties of the foundational fuel chemistry model used (USC Mech II). In addition, we introduce an approach in the realm of the HyChem approach to address the need to predict the negative-temperature coefficient (NTC) behaviors of jet fuels, in which the CH2O speciation history is proposed to be a viable NTC-activity marker for model development. Finally, the paper shows that the HyChem model can be reduced to about 30 species in size to enable turbulent combustion modeling of real fuels with a testable chemistry model. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:我们提出并测试了对多组分真实燃料的高温燃烧化学进行建模的替代方法。混合化学(HyChem)方法使燃料热解与燃料热解产物的氧化脱钩。通过七个集总反应步骤对热解(或氧化热解)过程进行建模,其中化学计量和反应速率系数均来自实验。通过基础烃类燃料的详细化学描述了氧化过程。我们以三种常规喷气燃料和两种火箭燃料为例给出了结果。建模结果表明,HyChem模型能够预测广泛的燃烧特性,包括所有五种燃料的点火延迟时间,层流火焰速度和非预混火焰熄灭应变率。敏感性分析显示,对于常规的石油衍生的真实燃料,C2H4和CH4影响模型预测的实验测量中的不确定性在一定程度上是确定的,但模型可预测性的最大影响源于所使用的基础燃料化学模型的不确定性( USC Mech II)。此外,我们在HyChem方法领域引入了一种方法,以满足预测喷气燃料的负温度系数(NTC)行为的需要,其中CH2O的形成史被认为是可行的NTC活性标记模型开发。最后,论文表明,HyChem模型的大小可以减少到约30种,从而能够使用可测试的化学模型对真实燃料进行湍流燃烧建模。 (C)2018年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

  • 来源
    《Combustion and Flame》 |2018年第7期|520-537|共18页
  • 作者单位

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Univ Southern Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA;

    Univ Southern Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA;

    Univ Southern Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA;

    Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA;

    Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA;

    Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA;

    Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA;

    Univ Southern Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Kinetics; Jet fuel; Rocket fuel; Reaction model; HyChem;

    机译:动力学;喷气燃料;火箭燃料;反应模型;HyChem;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号