首页> 外文期刊>Combustion and Flame >Analysis of combustion noise of a turbulent premixed slot jet flame
【24h】

Analysis of combustion noise of a turbulent premixed slot jet flame

机译:湍流预混狭缝射流火焰的燃烧噪声分析

获取原文
获取原文并翻译 | 示例
           

摘要

The sound generation due to the interaction between the turbulent flow field and a premixed slot flame is numerically studied by a hybrid analysis. The impact of varying gas expansion ratios and Markstein lengths is investigated. The acoustic flame response function and the acoustic source terms determine the overall flame response to heat release fluctuations. The location where sound is emitted is computed by the spatial and spectral acoustic source term distribution and a spectral flame front response study. The acoustic flame response of the slot jets is similar to that of round jets. From the current results and data from the literature it is suspected that as long as the flame undergoes a turbulent flame-flow interaction a typical acoustic pressure and heat release trend leads to an acoustic flame response trend of alpha St(2) in the low frequency region (St less than or similar to 20) and a plateau region beta St(0) for St greater than or similar to 20. In the energy containing region (alpha St(2)), the acoustic sound is produced by local heat release fluctuations determined by the spectral flame front response at several mean flame front locations. The acoustic source terms depend on the gas expansion and shear layer effect induced by the flame front kinematics. At the flame base, flame pocket generation is enhanced at decreasing gas expansion ratio due to the increased vortex flame interaction. At the flame tip, flame pocket generation is increased at high temperature ratios due to the hydrodynamic instability effect The flame front kinematics affects the acoustic source terms by the flame-flow interaction and leads to a lower magnitude of flame response for decreasing gas expansion ratios. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:通过混合分析对湍流场和预混槽火焰之间相互作用产生的声音进行了数值研究。研究了变化的气体膨胀比和Markstein长度的影响。声火焰响应函数和声源项确定了对热量释放波动的总体火焰响应。通过空间和频谱声源项分布以及频谱火焰前响应研究计算出发出声音的位置。缝隙射流的声火焰响应与圆形射流的相似。从目前的结果和文献数据可以怀疑,只要火焰经历湍流流动,典型的声压和放热趋势就会导致低频处的St St(2)声响应趋势。区域(St小于或相似于20)和平稳区域beta St(0)(对于St大于或相似于20)。在能量包含区域(alpha St(2))中,声音通过局部放热产生由光谱火焰前响应在几个平均火焰前位置确定的波动。声源项取决于火焰前沿运动学引起的气体膨胀和剪切层效应。在火焰底部,由于涡流火焰相互作用的增加,随着气体膨胀率的降低,火焰袋的生成得以增强。在火焰尖端,由于流体动力学的不稳定性效应,在高温下,火焰袋的生成增加。火焰前运动学通过火焰流相互作用影响声源项,并导致较低的火焰响应幅度,从而降低了气体膨胀率。 (C)2016年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号