首页> 外文期刊>Combustion and Flame >Flame-turbulence interaction of laminar premixed deflagrated flames
【24h】

Flame-turbulence interaction of laminar premixed deflagrated flames

机译:层流预混爆燃火焰的湍流相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

The demand for higher combustion efficiency and performance is attainable through pressure gain combustion. Pressure gain combustion exploits the pressure rise for high flow momentum and pressure augmentation. One possible mechanism for detonation is turbulence generation and induction to augment the deflagrated flame acceleration. The study examines the interaction mechanisms of the laminar deflagrated flame with turbulence induced by a fluidic jet, composed of a transverse slot. The mechanisms of the jet including, flame-flow restriction, jet entrainment, turbulent transport, and recirculation are examined to determine the flame-turbulence interaction modes and their influence on the propagating deflagrated flame. The flame interaction and acceleration are compared to that induced by traditional solid obstacles. The flame structural dynamics and reacting flowfield are characterized using simultaneous high-speed PIV and chemiluminescence measurements. Additionally, high-speed Schlieren is used for visualizing the interaction features. Higher flame acceleration is observed for the fluidic jet relative to the obstacle. The flame interaction with the jet turbulence is dominated by a cross-stream high turbulent transport mechanism; whereas, the interaction for the obstacle is driven by Kelvin-Helmholtz and Rayleigh -Taylor instabilities. The obtained results show the dynamic flame evolution phenomenon of the local flame regime (laminar-corrugated flamelet-thin reactions). (C)2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:通过压力增益燃烧可以达到对更高燃烧效率和性能的需求。压力增加燃烧利用压力上升来实现高流动动量和压力增加。爆炸的一种可能机制是湍流的产生和诱导,以增强爆燃的火焰加速度。研究检查了层流爆燃火焰与由横向狭缝组成的射流引起的湍流的相互作用机理。检查了射流的机制,包括火焰流量限制,射流夹带,湍流传输和再循环,以确定火焰-湍流相互作用模式及其对传播的爆燃火焰的影响。将火焰相互作用和加速度与传统固体障碍物引起的相互作用进行了比较。火焰结构动力学和反应流场使用高速PIV和化学发光同时进行表征。此外,高速Schlieren用于可视化交互功能。流体射流相对于障碍物观察到更高的火焰加速度。火焰与射流湍流的相互作用主要由横流高湍流传输机制决定。而障碍物的相互作用是由开尔文-海姆霍兹(Kelvin-Helmholtz)和瑞利-泰勒(Rayleigh-Taylor)不稳定性驱动的。获得的结果显示了局部火焰状态的动态火焰演化现象(层状波纹火焰小反应)。 (C)2016燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号