...
首页> 外文期刊>Combustion and Flame >A flame spread simulation based on a comprehensive solid pyrolysis model coupled with a detailed empirical flame structure representation
【24h】

A flame spread simulation based on a comprehensive solid pyrolysis model coupled with a detailed empirical flame structure representation

机译:基于全面的固体热解模型并结合详细的经验火焰结构表示的火焰蔓延模拟

获取原文
获取原文并翻译 | 示例
           

摘要

A new model, which represents a unified description of material thermal degradation and burning under thermally thin (non-dimensional), surface radiant heating (one-dimensional) and upward flame spreading (two-dimensional) conditions, has been developed by coupling the numerical pyrolysis solver ThermaKin2D, whose function is to compute the transient rate of gaseous fuel production of a material in response to external heat transfer, with an empirical flame model that predicts a wall flame's heat feedback profile as a function of material mass loss rate. A previously developed pyrolysis model of poly(methyl methacrylate), which was parameterized using a combination of milligram-scale simultaneous thermal analysis experiments and gram-scale gasification tests, was validated in this study using gasification experiments distinct from those utilized in the parameterization process. A previously developed wall flame model was reformulated to include results of new heat flux measurements from 3 to 20 cm above the base of the flame. Inclusion of these results improved the model's predictive capabilities at ignition and across a larger range of flame sizes. The new unified model was employed to predict vertical burning and upward flame spread on 4 and 17.5 cm tall samples of poly(methyl methacrylate). The model predictions - including time to ignition and initial, peak, and rate of rise of sample mass loss rate - were found to closely match experimental results. The impacts of melt flow effects and uncertainties in the flame model formulation on the unified model predictions were examined and found to be moderate. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:通过耦合数值,开发了一个新模型,该模型代表了材料在热稀薄(无维),表面辐射加热(一维)和向上火焰扩散(二维)条件下的热降解和燃烧的统一描述。热解求解器ThermaKin2D,其功能是根据外部传热来计算材料的气态燃料生产的瞬态速率,并具有经验火焰模型,该模型可预测壁火焰的热反馈曲线与材料质量损失率的关系。本研究使用与参数化过程不同的气化实验验证了先前开发的聚甲基丙烯酸甲酯的热解模型,该模型使用毫克级同时热分析实验和克级气化试验进行了参数化。重新构造了以前开发的壁式火焰模型,以包括新的热通量测量结果,该测量结果位于火焰底部上方3至20 cm。包含这些结果改善了模型在着火和更大范围的火焰尺寸下的预测能力。新的统一模型用于预测聚甲基丙烯酸甲酯4和17.5厘米高样品的垂直燃烧和向上火焰蔓延。发现模型预测-包括点火时间以及样品质量损失率的初始,峰值和上升速率-与实验结果非常吻合。检验了熔体流动效应和火焰模型公式的不确定性对统一模型预测的影响,发现该影响中等。 (C)2015年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号