...
首页> 外文期刊>Combustion and Flame >Experimental study of vortex-flame interaction in a gas turbine model combustor
【24h】

Experimental study of vortex-flame interaction in a gas turbine model combustor

机译:燃气轮机模型燃烧室涡流-火焰相互作用的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

The interaction of a helical precessing vortex core (PVC) with turbulent swirl flames in a gas turbine model combustor is studied experimentally. The combustor is operated with air and methane at atmospheric pressure and thermal powers from 10 to 35 kW. The flow field is measured using particle image velocimetry (PIV), and the dominant unsteady vortex structures are determined using proper orthogonal decomposition. For all operating conditions, a PVC is detected in the shear layer of the inner recirculation zone (IRZ). In addition, a co-rotating helical vortex in the outer shear layer (OSL) and a central vortex originating in the exhaust tube are found. OH chemiluminescence (CL) images show that the flames are mainly stabilized in the inner shear layer (ISL), where also the PVC is located. Phase-averaged images of OH-CL show that for all conditions, a major part of heat release takes place in a helical zone that is coupled to the PVC. The mechanisms of the interaction between PVC and flame are then studied for the case P= 10 kW using simultaneous PIV and OH-PLIF measurements with a repetition rate of 5 kHz. The measurements show that the PVC causes a regular sequence of flame roll-up, mixing of burned and unburned gas, and subsequent ignition of the mixture in the ISL. These effects are directly linked to the periodic vortex motions. A phase-averaged analysis of the flow field further shows that the PVC induces an unsteady lower stagnation point that is not present in the average flow field. The motion of the stagnation point is linked to the periodic precession of the PVC. Near this point burned and unburned gas collide frontally and a significant amount of heat release takes place. The flame dynamics near this point is also coupled to the PVC. In this way, a part of the reaction zone is periodically drawn from the stagnation point into the ISL, and thus serves as an ignition source for the reactions in this layer. In total, the effects in the ISL and at the stagnation point showed that the PVC plays an essential role in the stabilization mechanism of the turbulent swirl flames. In contrast to the PVC, the vortices in the OSL and near the exhaust tube have no direct effect on the flame since they are located outside the flame zone.
机译:实验研究了螺旋进动涡流核(PVC)与湍流涡流火焰在燃气轮机模型燃烧器中的相互作用。该燃烧器在大气压下以空气和甲烷运行,热功率为10至35 kW。使用粒子图像测速仪(PIV)测量流场,并使用适当的正交分解确定主要的非定常涡旋结构。对于所有操作条件,都在内部再循环区(IRZ)的剪切层中检测到PVC。此外,在外剪切层(OSL)中发现了同向旋转的螺旋涡旋,而在排气管中发现了中心涡旋。 OH化学发光(CL)图像显示火焰主要在PVC所在的内剪切层(ISL)中稳定。 OH-CL的相均图像显示,在所有条件下,大部分热量释放发生在与PVC相连的螺旋区中。然后,对于P = 10 kW的情况,使用同时进行的PIV和OH-PLIF测量(重复频率为5 kHz)研究了PVC与火焰之间相互作用的机理。测量结果表明,PVC会导致规则的火焰卷起,燃烧的气体和未燃烧的气体混合以及随后的混合物在ISL中着火。这些影响与周期性涡旋运动直接相关。对流场的相位平均分析还表明,PVC会引起不稳定的较低的停滞点,该点在平均流场中不存在。停滞点的运动与PVC的周期性进动有关。在这一点附近,已燃烧和未燃烧的气体在正面发生碰撞,并产生大量的热量。此点附近的火焰动力学也与PVC耦合。以这种方式,将反应区的一部分从停滞点周期性地吸入ISL,从而用作该层中反应的引燃源。总的来说,在ISL和停滞点的影响表明,PVC在湍流旋流火焰的稳定机制中起着至关重要的作用。与PVC相比,OSL中和排气管附近的涡流对火焰没有直接影响,因为它们位于火焰区域之外。

著录项

  • 来源
    《Combustion and Flame》 |2012年第8期|p.2636-2649|共14页
  • 作者单位

    German Aerospace Center (DLR), Institute of Combustion Technology, Ffaffenwaldring 38-40, 70569 Stuttgart, Germany;

    German Aerospace Center (DLR), Institute of Combustion Technology, Ffaffenwaldring 38-40, 70569 Stuttgart, Germany;

    Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433, USA;

    German Aerospace Center (DLR), Institute of Combustion Technology, Ffaffenwaldring 38-40, 70569 Stuttgart, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    gas turbine combustion; turbulent swirl flame; precessing vortex core; laser diagnostics;

    机译:燃气轮机燃烧湍流旋流火焰旋进旋涡芯;激光诊断;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号