...
首页> 外文期刊>Combustion and Flame >Shock tube measurements of species time-histories in monomethyl hydrazine pyrolysis
【24h】

Shock tube measurements of species time-histories in monomethyl hydrazine pyrolysis

机译:单甲基肼热解中物种时间历史的冲击管测量

获取原文
获取原文并翻译 | 示例
           

摘要

The first measurements of NH_2 and NH_3 time-histories in monomethyl hydrazine (MMH) pyrolysis were performed behind reflected shock waves in a shock tube using laser absorption techniques. An improved measurement of MMH using IR laser absorption is also presented. MMH concentrations of ~ 1 % in Ar were employed, over the temperature range 941-1252 K, at pressures near 2 atm. NH2 was measured at the peak of the overlapping AA_t, ← X~2B_1 (090 ← 000)∑~PQ_(1.N)7 doublet lines at 16739.90 cm~(-1) (597.4 nm). NH_3 and MMH were measured using direct absorption of CO_2 laser lines at 9.22 and 10.22 urn, respectively. These measurements were then compared to a current comprehensive MMH pyrolysis mechanism based on the work of Sun et al. (2009) and Zhang et al. (2010). Based on the measurements of NH_2 and NH_3, it was possible to measure rate coefficients for two key reactions in the MMH pyrolysis system: CH_3NHNH_2 →CH_3NH + NH_2 (1) CH_3NHNH_2 + NH_2 → CH_3NNH_2 + NH_3 (2) These rates combined with the measured overall MMH decomposition rate strongly imply that Reaction (1) is the dominant MMH decomposition channel. The following rate coefficients (2 atm, 900-1300 K) were uniquely determined: K_1 =1.50 × 10~(58)*T~(12.84)exp(-39580/T)s~(-1) K_2 = 3.70 × 10~(14) exp(-2620/T) cm~3mol ~1 s~(-1) Based on the MMH measurement, the value of the CH_3 decomposition channel is 0-20% of the NH_2 channel, and a value of 1.64 x 10~(58) * T~(-12.84) exp(-39580/T) s~(-1) is recommended for the overall unimolecular decomposition of MMH. Further analysis of the NH_2 measurements indicate that the rate of the following reaction used in the Princeton mechanism should also be significantly increased: CH_3NNH + NH_2→CH_3NN + NH_3 (4) The changes to the MMH pyrolysis mechanism recommended in this work result in greatly improved agreement between measured and modeled NH_2, NH_3, and MMH time-histories over the entire range of the study.
机译:使用激光吸收技术在冲击管中的反射冲击波之后,对单甲基肼(MMH)热解中的NH_2和NH_3的时间历史进行了首次测量。还提出了使用红外激光吸收对MMH进行改进的测量方法。在941-1252 K的温度范围内,在接近2个大气压的压力下,使用的Ar的MMH浓度约为1%。在重叠的AA_t,←X〜2B_1(090←000)∑〜PQ_(1.N)7双峰线的峰值处测量NH2,其峰值为16739.90 cm〜(-1)(597.4 nm)。 NH_3和MMH分别使用直接吸收CO_2激光线在9.22和10.22 urn处测量。然后将这些测量值与基于Sun等人的工作的当前综合MMH热解机理进行比较。 (2009)和Zhang等。 (2010)。根据NH_2和NH_3的测量值,可以测量MMH热解系统中两个关键反应的速率系数:CH_3NHNH_2→CH_3NH + NH_2(1)CH_3NHNH_2 + NH_2→CH_3NNH_2 + NH_3(2)这些速率与测量值相结合总体MMH分解速率强烈暗示反应(1)是主要的MMH分解通道。唯一确定以下速率系数(2 atm,900-1300 K):K_1 = 1.50×10〜(58)* T〜(12.84)exp(-39580 / T)s〜(-1)K_2 = 3.70×10 〜(14)exp(-2620 / T)cm〜3mol〜1 s〜(-1)根据MMH测量,CH_3分解通道的值为NH_2通道的0-20%,值为1.64对于MMH的整体单分子分解,建议使用x 10〜(58)* T〜(-12.84)exp(-39580 / T)s〜(-1)。 NH_2测量值的进一步分析表明,普林斯顿机理中使用的以下反应速率也应显着提高:CH_3NNH + NH_2→CH_3NN + NH_3(4)这项工作中推荐的MMH热解机理的改变大大改善了在整个研究范围内,实测和建模的NH_2,NH_3和MMH时间历史之间的一致性。

著录项

  • 来源
    《Combustion and Flame》 |2011年第4期|p.790-795|共6页
  • 作者单位

    High Temperature Casdynamics Laboratory, Mechanical Engineering Department, Stanford University, Stanford, California 94305;

    High Temperature Casdynamics Laboratory, Mechanical Engineering Department, Stanford University, Stanford, California 94305;

    High Temperature Casdynamics Laboratory, Mechanical Engineering Department, Stanford University, Stanford, California 94305;

    High Temperature Casdynamics Laboratory, Mechanical Engineering Department, Stanford University, Stanford, California 94305;

    High Temperature Casdynamics Laboratory, Mechanical Engineering Department, Stanford University, Stanford, California 94305;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    MMH; monomethyl hydrazine; pyrolysis; shock tube; user absorption;

    机译:MMH;一甲基肼;热解冲击管用户吸收;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号