...
首页> 外文期刊>Combustion and Flame >Combined surface density concepts for dense spray combustion
【24h】

Combined surface density concepts for dense spray combustion

机译:结合表面密度概念进行密集喷雾燃烧

获取原文
获取原文并翻译 | 示例
           

摘要

Concepts of surface density are exploited to model the coupled processes of atomization, vaporization, and combustion in turbulent jet flames formed by cryogenic propellants. An Eulerian framework is used to describe the two-phase flow formed by a coaxial injector fed by liquid oxygen and gaseous hydrogen. A transport equation for the density of the liquid interface represents the jet break-up, subsequent atomization, and space-time evolution of the liquid surface area which combined with a local description of the vaporization flux provides the volumetric source of gaseous oxygen. Subcritical and transcritical conditions are successively considered. Another transport equation for the flame surface density is then used to evaluate the mean reaction rate per unit volume. This reaction rate depends on an effective strain rate and on operating parameters such as the mean pressure prevailing in the combustion chamber. A simple analysis based on the fast chemistry limit indicates that the local rate of reaction varies like the square root of pressure and strain rate. A computational model combining these various elements is established. Calculated cryogenic flame structures are compared to recent experimental data corresponding to different gas to liquid momentum flux ratios and chamber pressures. The mean reaction rate spatial maps are in agreement with experimental OH light emission images which are used to locate the chemical reaction regions. Parametric studies indicate how the liquid or transcritical phase evolution modifies the flame pattern.
机译:利用表面密度的概念来模拟由低温推进剂形成的湍流喷射火焰中的雾化,汽化和燃烧的耦合过程。欧拉框架用于描述由液态氧和气态氢供入的同轴注射器形成的两相流。液体界面密度的输运方程表示射流破裂,随后的雾化和液体表面积的时空演化,再结合对汽化通量的局部描述提供了气态氧的体积来源。依次考虑了亚临界和跨临界条件。然后使用另一个用于火焰表面密度的运输方程式来评估每单位体积的平均反应速率。该反应速率取决于有效的应变速率和运行参数,例如燃烧室内存在的平均压力。基于快速化学极限的简单分析表明,局部反应速率像压力和应变速率的平方根一样变化。建立结合了这些各种元素的计算模型。将计算出的低温火焰结构与对应于不同气液动量通量比和腔室压力的最新实验数据进行比较。平均反应速率空间图与用于定位化学反应区域的实验OH发光图像一致。参数研究表明液相或跨临界相演化如何改变火焰模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号