首页> 外文期刊>Combustion Science and Technology >Investigation of the Jet-Flame Interaction by Large Eddy Simulation and Proper Decomposition Method
【24h】

Investigation of the Jet-Flame Interaction by Large Eddy Simulation and Proper Decomposition Method

机译:大型涡模拟仿真和适当分解方法的喷射火焰相互研究

获取原文
获取原文并翻译 | 示例
           

摘要

Large eddy simulation (LES) results are presented for a premixed methane/air turbulent flame arising from a confined laboratory-scale single-nozzle burner. The jet issuing from an off-centered nozzle facilitates the development of a large-scale, dominant lateral recirculation zone that stabilizes the flame. A self-sustained jet oscillation is present, which intermittently causes extreme flame fluctuations such as blowout and relight events in the bottom section of the combustion chamber. The combined probability density function transport approach with the Eulerian stochastic fields method is used to numerically investigate the influence of this jet oscillation on combustion stability at the operating condition near lean blowout. The general structure of the flow, including the formation of the recirculation zones depending on the location of the flapping jet, is well-reproduced together with the mean and fluctuating velocity profiles. The behavior of the jet oscillation is investigated using a popular decomposition method known as proper orthogonal decomposition (POD) based on the predicted three-dimensional flow fields. Thanks to POD, the evolution of the simulated flame structure featuring a pronounced flame fluctuation is compared against that experimentally measured according to the phase angles of the low-order modeled jet motion. The absence of the most dominant coherent structure at a single frequency is due to a feedback mechanism between the jet oscillation and combustion process. The simulation shows that a low-frequency jet flapping causes the flame blowout and flashback in the bottom section of the combustor and a stable flame persists as long as the jet flapping rate exceeds a critical value.
机译:大型涡流仿真(LES)结果显示为由狭窄的实验室级单喷嘴燃烧器引发的预混合甲烷/空气湍流火焰。从离心喷嘴发出的喷射有助于开发大规模的主导侧面再循环区域,稳定火焰。存在自持续的喷射振荡,其间歇地使极端火焰波动如燃烧室的底部底部的井喷和赖特事件。具有欧拉随机场法的组合概率密度函数传输方法用于数值上研究了该喷射振荡对贫井喷附近的操作条件的燃烧稳定性的影响。流动的一般结构包括根据拍打射流的位置的再循环区域的形成,与平均值和波动速度剖面一起再现。使用基于预测的三维流场的受欢迎的分解方法研究了喷射振荡的行为。由于POD,将模拟火焰结构的演变与经发火焰波动的较大,并根据低阶模型喷射运动的相位角进行实验测量。由于喷射振荡和燃烧过程之间的反馈机制,在单个频率下不存在最大的相干结构。该模拟表明,由于喷射拍打速率超过临界值,低频射流跳动导致火焰吹出和闪蒸在燃烧器的底部和闪蒸持续存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号