...
首页> 外文期刊>Combustion Science and Technology >Investigation of a High Karlovitz, High Pressure Premixed Jet Flame with Heat Losses by LES
【24h】

Investigation of a High Karlovitz, High Pressure Premixed Jet Flame with Heat Losses by LES

机译:LES的热损失高karlovitz的调查,高压预混喷射火焰

获取原文
获取原文并翻译 | 示例
           

摘要

Large-eddy simulations (LES) are presented for a lean preheated high pressure jet flame experiment for which detailed in situ data is available, using a finite rate chemistry (FRC) approach in a gas-turbine model combustor at high Karlovitz number. The impact of the different combustion models on the flame stabilization in the simulation is investigated and the predicted carbon monoxide (CO) and nitric oxide (NOx) emissions are analyzed. For the FRC approach, the DRM19 reaction mechanism and a new inhouse skeletal mechanism are applied. The more detailed DRM19 mechanism is extended to include OH* species, the new skeletal mechanism includes CO and NO(x)reaction paths. An industry relevant tabulated chemistry approach is assessed on the ability to predict this lifted flame, where the flamelet tables are calculated from the detailed GRI-3.0 reaction mechanism. A dynamic thickened flame approach is applied to resolve the flame on the numerical grid including a model for the turbulence chemistry interaction. Adiabatic and non-adiabatic simulations are compared, where the impact of heat losses due to chamber cooling and thermal radiation are considered. Velocities, temperatures, fuel mass fractions and CO and NO(x)mass fractions at different axial locations are in good agreement to the experiments when heat losses are considered. The significant flame lift was correctly predicted by the FRC approach with DRM19 chemistry when non-adiabatic boundary conditions were applied. This provides evidence that the flame is stabilized by flame propagation assisted by auto ignition and that ignition-delay times of mixtures composed of fresh and burnt gases need to be captured by the applied models.
机译:对于精益预热的高压射流火焰试验,提供了大涡流模拟(LES),其详细使用在高卡洛维茨数的燃气轮机模型燃烧器中使用有限速率化学(FRC)方法。研究了不同燃烧模型对模拟中的火焰稳定化的影响,并分析了预测的一氧化碳(CO)和一氧化氮(NOx)排放。对于FRC方法,应用DRM19反应机制和新的室内骨架机制。更详细的DRM19机制扩展到包括OH *物种,新的骨骼机制包括CO和NO(X)反应路径。评估行业相关的制表化学方法,以预测该提升火焰的能力,其中挥动表由详细的Gri-3.0反应机制计算。应用动态增厚的火焰方法来解析数值网格上的火焰,包括湍流化学相互作用的模型。比较绝热和非绝热模拟,其中考虑了由于腔室冷却和热辐射引起的热损失的影响。当考虑热损失时,不同轴向位置处的速度,温度,燃料质量分数和CO和NO(X)质量级分并不吻合实验。当施加非绝热边界条件时,通过使用DRM19化学的FRC方法正确预测了显着的火焰升力。这提供了证据表明,通过自动点火辅助的火焰传播稳定火焰,并且需要通过应用的模型捕获由新鲜和燃烧气体组成的混合物的点火延迟时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号